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I. Summary of Research Accomplishments

This project was concerned with simulated annealing, a Monte Carlo method for obtaining glo-

bally optimal or nearly globally optimal solutions to a variety of optimization problems. - " "

We have achieved key results in two main areas:

i) characterizing the cooling rate necessary and sufficient for simulated annealing to hit the global

minimum, and

ii) obtaining a novel upperbound for the time-constant of convergence of simulated annealing at a

fixed temperature to its equilibrium distribution and studying the growth of this bound as the tem-

perature approaches zero asymptotically.

Simulated annealing with a time varying temperature gives rise to a time inhomogeneous Markov

chain. This Markov chain is difficult to analyze and study due to the time-inhomogeneity. We have

been able to obtain a novel theory for analyzing such processes. We have introduced a notion of

recurrence order" associated with each state of a Markov chain. Essentially, this recurrence order

characterizes the rate of convergence of the occupation probability for the state. Our central result con-

sists of the discovery that these recurrence orders satisfy a "balance equation" across every cutset of

the graph of the chain for the general class of such Markov chains. For the special case of simulated

annealing with symmetric neighborhoods, they even satisfy a "detailed balance" for every pair of

states.

These balance equations transform the analytical problem of determining the asymptotic behavior

of simulated annealing into a purely algebraic problem of solving the balance equations. We have

obtained graph theoretic algorithms for solving such balance equations in general, and for simulated []

annealing in particular have obtained explicit solutions.

From the explicit solutions to the balance equations we have been able to characterize, i.e., obtain /
Codes

the necessary as well as sufficient condition for, the cooling rate in order for simulated annealing to hit nd/or - '
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the global minimum of the optimization problem with probability one.

The above results are detailed in [1-3] of the attached list of Publications.

The behavior of simulated annealing at a fixed temperature can be modeled by a reversible time-

homogeneous Markov chain converging to an equilibrium distribution at that temperature. As the tem-

perature goes to zero asymptotically, the equilibrium distributions themselves converge to the optimal

distribution. In [4], we have obtained a novel upper bound for the second largest eigenvalue of a finite

reversible time-homogeneous Markov chain as a function of three parameters, namely, the smallest

transition probability, the underlying structure of the chain, and the skewness of the equilibrium distri-

bution. This eigenvalue bound enables us to bound the time-constant of convergence of a reversible

Markov chain to its equilibrium distribution. In particular, we can hound the time constant of conver-

gence of a fixed-temperature simulated annealing algorithm solving a particular instance -f an optuai-

zation problem. Moreover, we can study the growth of this bound as the temperature approaches zero

or skewness becomes arbitrarily large; thereby, providing a fairly good understanding of the tempera-

ture asymptotics of the simulated annealing algorithm. We exhibit a class of Markov chains on which

our bound, treated as a function of skewness alone, is asymptotically tighter than previously established

bounds based on a certain parameter known as the conductance of the Markov chain. We also show

that our bound is, in general, much easier to compute for simulated annealing chains.

More recently, we have achieved what we believe to be a significant breakthrough in understand-

ing the size-asymptotics of a time-homogeneous simulated anne, .i,,g zlain solving a particular com-

binatorial optimization problem known as the Integer Knapsack pioblem. For this NP-Hard problem,

we have been able to derive sufficient conditions under which the time-constant of convergence of a

fixed-temperature simulated annealing chain is a polynomial in the size of the problem. Combining

this with an in-depth study of cost distributions and density of states, we have shown that for certain

versions of the Integer Knapsack problem, a fixed-temperature simulated annealing algorithm can find a
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state with cost sufficiently close to the global minimum in polynomial time with overwhelming proba-

bility. The manuscript containing these results is still under preparation and will be made available as

soon as it is ready for publication.
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SIMULATED ANNEALING TYPE MARKOV CHAINS AND THEIR ORDER
BALANCE EQUATIONS*

DANIEL P. CONNORSt AND P. R. KUMARz

Abstract. Generalized simulated-annealing type Markov chains where the transition probabilities are
proportional to powers of a vanishing small parameter are considered. An "order of recurrence." which
quantities the asymptotic behavior of the state occupation probability, is associated with each state. These

orders of recurrence satisf a fundamental balance equation across every edge-cut in the graph of the Markov
chain. Moreover. the Marko% chain converges in a Cesaro-sense to the set of states having the largest
recurrence orders. These results convert the analytic problem of determining the asymptotic properties of
the time-inhomogeneous stochastic process into a purely algebraic problem of solving the balance equations
to determine the recurrence orders.

Graph theoretic algorithms are provided to determine the solutions of the balance equations. By appling
these results to the problem of optimization by simulated annealing, it is shown that the sum of the recurrence
order and the cost is a constant for all states in a certain connected set, whenever a "'eak-reversibilit_
condition is satisfied. This allows the necessary and sufficient condition for the optimization algorithm to
hit the global minimum with probability one to be obtained.

Key words. simulated annealing, optimization. Markos chains

AIS(NIOS) subject classifications. 60J I1, 90C27

1. Introduction. We consider finite state Markov chains fx(t)j with transition
probabilities of the type

p,(t) = cF(t) ,

where - t) is a small parameter converging to zero. In a previous paper [7] we have
shown that if we define "orders of recurrence" by (more precise definitions are given

in §2)

J3, : sup Ic -0:, E (tI),'T, (t)+=,X}

then

(i) These recurrence orders satisfy a balance equation, max,...,..v (3, - V,,)=
max, ., ., (0 V,, ), for every subset A; and

(ii) The Markov process converges to the set of states with the largest orders of
recurrence.

This provides a novel approach to analyzing the asymptotic behavior of such
time-inhomogeneous Markov processes. Specifically, we use (i) to solve the balance
equations, and then (ii) provides the limiting behavior. Moreover, the orders of
recurrence also provide information about the rates of convergence of the state

occupation probabilities. This approach via recurrence orders therefore converts the
analytic problem of determining the asymptotic behavior of the time-inhomogeneous
process into a purely algebraic problem of solving the balance equations.

* Received by the editors July II, 1988. accepted for publication (in revised form) December 30, 1988.
This research has been supported in part by Air Force Office of Scientific Research contract AFOSR-88-

01181, U.S. Army Research Office contract DAAL-03-88-K0046, and Joint Services Electronics Program

contract N(X)014-94-C-0149.
IBM Thomas J. Watson Research (enter. P.O. Box 218, Yorktown Heights, New York 10598.
Department of Electrical and Computer Engineering, and the Coordinated Science Laboratory.

University of Illinois. 1101 W. Springfield Asenue, Urbana, Illinois 61801.
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A significant motivation for studying such Markov chains lies in the fact that in

the method of optimization by simulated annealing, if { Wi} is the cost function whose
minimum is sought, then we obtain a Markov chain with

p,,(t) = cqE (t)"- ....o.A ,

Thus simulated annealing is a special case where the powers VK satisfy

Vij:= max (0, W - W),

for some { , .
To pursue the above approach to analyzing such time-inhomogeneous Markov

chains, it is necessary to be able to solve the balance equations. However, there can
be nonunique solutions to the balance equations. We present graph-theoretic circulation
based algorithms to obtain a solution, as well as all solutions, to the balance equations.
We show by an example the interesting phenomenon that such nonuniqueness can
arise when the asymptotic properties of the Markov process, and the recurrence orders,
depend not just on the exponents Vi, but also on the proportionalit', constants c,,.

By applying these results to the Markov chain arising from the method of optimiz-
ation by simulated annealing when the "weak reversibility" condition of Hajek [1]
holds, we show that the sum of the recurrence order and the cost is a constant on sets
connected by recurrent arcs. This allows us to obtain the necessary and sufficient
condition for the optimization algorithm to hit the global minimum with probability
one. Our necessity result is a stronger sample path result than is found in [1] or [2].

Background. Tsitsiklis [2] has also investigated Markov chains with transition
probabilities proportional to powers of a small time-varying parameter. His analysis
was based on observing that due to the slow variation of {e(t)}, we can employ bounds
on the state occupation probabilities for stationary Markov chains, where e(t) is held
constant, to obtain bounds for the time-inhomogeneous case. His approach is quite
diflerent from ours.

Based on an analogy to the physical process of annealing, the sequence F(t) is
called the "cooling schedule," and just as in the physical analogy it plays a key role
in determining asymptotic behavior. It has been shown by Geman and Geman [3],
Mitra, Romeo, and Sangiovanni-Vincentelli [4], and Gidas [5], that simulated annealing
converges in probability to a minimum of the optimization problem provided

, .,,F(t= +x for large enough p. Hajek [I] has determined the necessary and
sufficient conditions on the value of p for the algorithm to converge in probability to
the minimum when a "weak reversibility" assumption is satisfied.

2. Orders of recurrence and balance equations. Consider a Markov chain over a
finite state space X whose transition probabilities are proportional to powers of a
vanishing time varying parameter t-(t); that is, the transition probabilities p,,(t):=

Prix~t+ l)=jjx(t)= i) are given by

(1) p,,(t)=c,,F(t)' for all i,j, X, ij, and Ic ' . and p,,(t) =l- pj,(t)

where

(2) 0 V,, -_+ x for all i,jcX,i~j,

(3) c,,-0 for all i, jcX, i j, andVc,=l for all i.
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Regarding the small parameter {e(t)}, we will asstime that, I
(4) O<E(t)<l for all tc:t',

(5) 3 M < c such that c (t) 5 M, (s) whenever t s, and I
(6) F s(t)"<cc forsomepe[1,+oc).

In what follows we will assume that in ()-(3) we have

c0 = O<* V, = +00,

which is clearly without any loss of generality. We shall denote by N, the set of all
states j with c, > 0. Finally, we will assume that the Markov chain is "connected;" I
i.e., for every i,j c X, there exists a path i = io, • • •, ip =j, with i E N,, , for I = I_ p.

Let ,r,(t):= Pr(x(t)= i) be the probability distribution of x(t), and let 7r,(t):=
Pr (x(t) = i, x(t + 1) =j) be the piobability of a transition from state i to j at time t.

The following example motivates the notion of "orders of recurrence" introduced
in [7].

Example 1. Suppose, for a certain Markov chain (with more than two states!),
we have

Then note that ,ve(t)'7Tj(t) is finite if c>/3:=2 and +xc if c-/3 1 . Similarly,
V 'i , (t)',r(t) is.finite if c>/3:= 1 and +Cc if c</3 2 . Now 7r,(t) converges to zero
more slowly than r,( t) and it is easy to see that this information is also captured by
the demarcation points /3, and /32, which thus provide a measure by which to rank
the rates at which ir,(t) and ,r,(t) converge to zero.

Motivated by this we define the recurrence orders for the states and transitions of
the Markov process, as follows.

Dtr.FINl1-ON I. The order of recurrence of a state ic X, denoted /3,, is

X f r,)t)< +X,

[3,: p ifp=sup Ic=0: F( r Tl(t)=+C} and .F(t)p7,(t)<+OC,

p if p m a x I c 0 : V (t)' r (t) - + oo I -

We say a state i is transient if /3, =-c; otherwise we say the state is recurrent.
In a similar manner we define the order of recurrence of the transition from i to j.
DiF-iNITION 2. The order of recurrence of the transition from state i toj, denoted

/3,, is

- if Z n-q(t)< ±

/3jP ifp=sup Ic_0: f(t)'r,(t)=+OC and Xe(t)P,(t)<+OC,

{c t0: (t),,(t) = + t I

Again, we say the transition from i to j is transient if/3,, = -oc; otherwise we say J
the transition is recurrent.
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It is also convenient to define p, the order of cooling of {(t)}, as follows.
DEFINITION 3. The order of the cooling schedule {(t)}, denoted p, is defined asi f
p:=' P if p=sup Ic=O: Y (t1)=+OcI and ' <(t)P<+cc

ifp=max Ic_-0: F (1)"= +00

The relationship between 13,, 3,, and p is given in the following lemma. It will
be :onenient in the sequel to define the operation "'0" as follows:

{-C if a<b,
a- b, if a2-b.

LI\,IM,\ 1. /3,, and /3, are related by
( 7) jl,=f, ~ /r all i,.j EX,

while p and 13, are related bY

(8) max 6, = p.

Proolf lfj i N,, then it immediately follows that13,, = -x. If.j c N,, then application
of the Chapman- Kolmogorov equation

rr,(O 7t ,( t)p,,(t)
= C (t) "', 7T,(t),

gives the first assertion. Similarly, since

-F(t)'= F (t) 7T,(t),

the second assertion also follows. 0
Knowledge of the /3,*s provides useful information about the asymptotic properties

of {x(t)}. The following theorem shows that the time-inhomogeneous Markov chain
converges in a Cesaro sense to the set of states having the largest orders of recurrence.

TliiORI. k I. Let .It be the set of states with the largest orders of recurrence:
t := iC X :/3G,-- = ).

Then

lim sup - Pr(x(t)c. H)=1.N

Prool Let us first consider the set .f defined by

. H=. ifp=0,-xoorp forsomep E?, p>O,

.lU{icX:f3,=p } ifp=p forsomepcd, p>O.

Note that if p = p, then .f may be slightly larger than .4t since it includes states, if
any, whose recurrence orders are p ; otherwise it is the same as .A1. We will first show
that

( 0N
(10) lim Nsup ,, Pr(x(t) .- )
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Consider first the case p > 0. Clearly, p = p or p for some p E 1, where p > 0. Let

Q={qE JR: for some iEJR', 3j =q or q-}.

Let 0 = infq ,(p - q), where inf 0= +co. Let

0 if 0<+,
p if 0 = +OC.

Consider the states in -i' and observe that for sufficiently small 8 > 0,

xPr(x(t)Eft')e(t)P-Y+ <+ o ,

t-0

since the state space is finite. An application of Kronecker's Lemma (see Chung [6])
gives

Nlim -(N)p - + P Pr (x(t) E J")=O;
Nt--

that is,

iN,,m (N()P 5 Pr (x(t) c.4f) 0.

Now we claim that

(12) lim sup Ne(N)P- +> 0.

Suppose not. Then,

lim Ne(N)P-" =0,
N-x

and so

im I/N
N-.

In particular, we have

lim 1/N Y+(P - W(P--A-+00

implying that

lim -+c .N- E'(N) P-r

However, since V,' Fr()P = +x, this would imply that

+0 for all small 6 >0,
N N

which is false. Hence, (12) holds and from (11) we deduce that

(13) N
(13) liminf- Pr(x(t) E )=0.

N-x N ,.l
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But since
I Pr (x(t) E 3) + Y Pr (x(t) E R ") = 1,

N tN
-~ Prx~t)A~)+X Prx~e.fl~l

the result (10) follows.
Now turn to the case p = 0. Then clearly, Y,)o Pr (x(t)e ER")< +00, and so (13)

is again true and the result (10) follows.
If p = -oo, the result (10) is trivial.

To proceed from (10) to (9), it is clearly sufficient to show that in the case p =p

for some pe E, p >0,

lim Pr (x(t) c {i: 13, = p-}) = 0.

This involves some results on the structure of the recurrence orders and is demonstrated

in Lemma 5. 0
Thus, knowledge of the recurrence orders {/,0} provides knowledge about the

asymptotic properties of the time-inhomogeneous Markov chain. In fact, as the reader

may see from Example 1, the recurrence orders also provide information about the

rates of convergence.
Our goal therefore is to determine the recurrence orders, and critical to that will

be the following result established in [7], which shows that there is a fundamental

balance of recurrence orders across every edge-cut in the graph of the Markov chain.
THEOREM 2 (Order Balance).

(14) max 3,= max 3,, for everyA X.
i, A. j, A' A.4.j A'

Equicalentlv, using the "(D" notation and (7),

(15) max 6,(DVi= max 6DiOey foreveryAEX.
A,); 4' ,4,v A'

Proof. We sketch the proof; see [7] for the precise proof. Choose A g X and note

that if {r(n)} n , is the sequence of random times at which the process moves from A
to A', while {(In)}, is the sequence of random times at which the process moves

from A' back to A, then we have

(n) < o-(n) < T(n+ 1),

where we have assumed, without loss of generality, that x(0) E A to give 'r( 1) < u( I).

Using this it follows from (5) that

F(t)'1(x(t)r-A",x(t+i0cA)= E(cr(n))"

n I

0 '0

M, 07n)

=M e(r(n+ 1))' +Mce(r(I))

1-I<M' F (a(n))" + m"e (o),

=M-" E(t)"(x(t) E A, x(t + 1) c A)+ M 2"e(Oy.

-ii
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By taking expected values and using the Monotone Convergence Theorem, it follows
that

e(t)' 7riAt) < +00,-, EUY I() 7O t< +0c.
t-0 i, A~j A' 10 i, A'.j, A

Hence both sides above converge or diverge together. Now if c is so large that everyterm on the left-hand side with i E A, j E A' converges, then clearly c is also so large
that every term on the right-hand side converges. Thus,

c> max ,B € : c> max 6,,.
,, A~j, A' kA.jcA'

Likewise if c is small enough so that some term on the left-hand side diverges, thenc is also small enough so that some term on the right-hand side diverges, and so
c! max /30€c_ max ,. D

i Aj A , A.j A'
Note that through Theorems I and 2 we have converted the problem of determiningthe asymptotic properties of the time-inhomogeneous Markov chain into an algebraicproblem of solving the balance equations (14). Note that (14) provides a maximum

of 2"'\ equations, one for each edgecut.
3. The modified balance equations. Note that if (3,,8 ,...., x ) satisfy (15),then (/3 - a, 0:! - a, . x - a) also satisfy (! 5) for every a, i.e., the solution set istranslation invariant. Thus (8), which fixes the maximum of the fPis, also needs to be

taken into account.
However, (15), (8) together can still possess nonunique solutions for sufficientlysmall values of p. In this section, we will show how we can obtain one solution to(15), (8); in the next section we show how to obtain all solutions.
In cases where there is a unique solution to the order balance equations, thealgorithm of this section gives an O([XI3 ) algorithm for determining it, compared tothe algorithm of § 4 for obtaining all solutions (in the nonunique case), which isexponential in JXJ. Also, the results of this section are used in the analysis of thesimulated annealing algorithm in § 5.
It is convenient to consider the following "modified" balance equations that, aswe show in the sequel, always possess a unique solution. Given p 2! 0 and V, _-> 0 forij = 1, • -, 1XI with i ?j, consider the problem of determining A:= (A, . k Av1) such

that
(16) max A,-V,,= max A,-V, foreveryAc{1,...,XI},

4.t, 4' A., A'

and
(17) max , =p.

We call (16), (17) the "'modified" balance equations. Observe that (16) differs from(15) in that the operation "-" is used in place of "G." Also. the A's can be negative
in (16).

We have introduced the modified balance equations to avoid the difficulties in
handling -x, that occur under the "D" operation.

TH.ORtEM 3 (Properties of Order Balance and Modified Balance Equations). (1) IfA satisfies the modified balance equations for a given p and V, then 3 defined by
(18) 13,:=, AE0
satisfies the order balance equations (15), (8) for the given p and V.

*11
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(2) For ever' given p and V, there exists a unique solution A to the modified balance
equations. Moreover, the solutions for different values of p are translates of each other.

(3) Whenever p is large enough, there exists a unique solution to the order balance
equations (15), (8). These unique solutions are all translates of the solutions for the
modified balance equations.

Proof. Suppose that for a fixed p and V, there exist two distinct solutions /3 and
/3 to the order balance equations. Define

A:= {kE X:3k-}.

Then we claim that

max 6,(DV0,= max 8,0Vj=-o
A .j, 4' i, A, j A'

and

max /6,(V,,= max 3iv=--co.
A.jf A' o, A.), A'

We need only consider the case where A # 0 and A 6 X (otherwise the claim is trivially
true), and let us suppose to the contrary that both expressions are nonnegative. Then

max ,01v,,= max /3,1v,,> max 3OV,,= max /3,0V max i,01v,,,
-A.,. A' ,, A.i. A . .4.j. A' A, ., A' A., A'

which is a contradiction. The other two cases follow similarly, and so the claim is true.
This shows that solutions to the order balance equations do not differ arbitrarily;
specifically, all the arcs that separate A from A' are transient.

Hence in particular, whenever we can show that

(19) f3,0 V,,-0 for all ij, with i5j, and V,,<+o,

there can only exist one solution to the order balance equations for the given (p, V).
Now we show that this is indeed the case when p is large, which will prove the

first part of the assertion (3) above. Specifically, suppose now that p >-2 Y.,: ,. + V,,.
Let i,,c X be a state with /3,= p. For arbitrary s X, let (i* = i,,, i, • • ., ip = s) be

a path from i* to s such that V, .,, < +oc for k = l, • • • ,p and i 0 i, for k 6 m. Let
l(i) = arg min, V,,. With A ={iA} and applying the Order Balance Theorem 2, it is easy
to see that

(20) /3, E , V,, _.,,-/3,,e V".,, ,= max (/3, e v,.,).
qi "

To prove that /3, _ max,, : %. V,, < +x, it is sufficient to show that for k = I, -, p,
along the path from i* to s,
(21) A3, >/01'- V,,.,, + V",.,",, - Vi .... + V,:.,o., .... .... + V,,.,,(")
since p -_ 2 V,.,: v, + V,,.

We prove (21) by induction. For k 1, from (20) we see that

(22) /3, 8 ,, _-30,A V().

Clearly, the left-hand side of (22) is nonnegative, implying that the right-hand side is
also nonnegative. Thus, we can replace "e" with "-" giving

(23) ass, m e0, - Vhod. f F + (20 w ha.
Now assume (2 1) holds for k - 1. From (20) we have

(24) G3,, V, ,.i, t- Pik G Vj&. 1(1,.
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The left-hand side of (24) is nonnegative and so

f3ij3 - " k 1 (00

--A,- K",.i, + Vi,.-'o- Vi' , + V:i" : M2) . Vi ... + Vi,.I,, ,

which completes the induction proof. This proves (19), and therefore there exist; a
unique solution whenever p is large enough, which is the first half of assertion (3) above.

Moreover, for the large enough p specified earlier, due to (19), we have '0,e V, =
f3,- Vj. Hence {,6} itself satisfies the modified balance equations. In fact, this solution
is unique to the modified balance equations since, if A is any other solution, then we
can prove in a fashion similar to the above, that Ai > VI, for all j E N, thus yielding
that A, V, = A, - Vi, which in turn proves that A is yet another solution to the order
balance equations, which is a contradiction.

Hence, at least for large enough values of p we have proved the existence of a
unique solution to the modified balance equations. However, it is easy to see that if
A satisfies the modified equations for a given (p, V), then A - 8 satisfies the modified
balance equations for (p -8, V), thus proving the existence of a unique solution to
the modified balance equations for all (p, V). This proves the assertion (2) as well as
the second half of the assertion (3) above.

Now we turn to the proof of assertion (1) above. Let A be arbitrary, and let {A,}
be the solution of the modified balance equations, and define3, Aieo. Suppose

max A,-V< 0 .
.- A~JEA'

Then by (16) we also have
max A,- V<0.
Aj A'

However, then for each i E A and j E A',

Pi!:A,<Vj and 03, _ A, < V,,.

Hence,

$8,eVV=-cC and 3,V,, = -oc,
and so

max e3,ev,= max 3,E V.,
Aj, A i .4,~ A'

thus satisfying the original order balance equations. If, however,
max A,- V, =8 _>O,
Ap A'

then by (16)

max A, - Vi = 5 - 0.
i.A.1 -.4.

Suppose that (i, j,) E A x A' and (i 2, j 2) E A" x A are such that

Aj, - V. 1 1,-A -V, .,, =.

Then since

Aj,= Vj,,, +8>O and A 1:= V1.i2 + 8=0

*1t



SIMULATED ANNEALING 1449

we have

/3,,= A,, and 6,,= A,,,

and so

I 114- V,,.,, Ph -

Also, since Ak ---3K, we have

max 3,GV--: max AjOlVj
, j., A A. A'

max A-Vii
, A,j( A"

Ai ,- Vi,,.j,

=P, - vi,,

=A3, e V,, j,.

Similarly, max,,._A.,..4, P ie v, = pj.. V -,_, and so

max 6,ev,= max P 'E)V",.

This proves the assertion 1I) and the theorem. 0-
Remark 1. It is interesting to note that the existence of a solution to the modified

balance equations has been proved by relying on the existence of a solution to the

order balance equations, which in turn is guaranteed by the probabilistic arguments

of Theorem 2. A separate independent constructive proof of existence, which does not

use probabilistic arguments, can be found in [8].
We now give an algorithm for determining the unique solution to the modified

balance equations. An illustrative example is convenient.

Example 2. Let p = 5 and

V=[ = 6 * 3

6 2 * 4
2 6 5*

Our goal is to determine A = (A,.. AA) which satisfies (16), (17). We shall refer to

A, - V, as the A-flow along the arc (i, j). Consider first the modified balance equation

for the edge cut A = ij,
(25) max A,- V,, =max A,- V,,.

Observe that the left-hand side of (25) can be written as

A, - min V0,

and so the ar of maximum A-flow out of A = eis the arc (i, o(i)) where

1(i) = arg min V,.

(Note that 1(i) may not be unique.)
We now construct the directed graph G, e(xs, El) te , h - d4 and

(ij) EE ifej (i). See Fig. 1.

Exampe 2.Let p5 an



1450 D. P. CONNORS AND P. R. KUMAR

121
X2- V23

N3 - W32

X ) --V14

- V4 1

F i. I. The graph G1 of Example 2.

Note that G, has two directed cycles Il}-{4}--1{1} and {2}--{3}--12}. Let us

examine the A-flows on the directed cycle I Y - 4} -. { 1 }. Since A, - V4 is the maximum
A-flow out of {}, it is not smaller than any A-flow into {}, and so in particular

A - V14 A 4- V41.

Also, A4 - V4, is the maximum A-flow out of {4} and so

A4 - V4 1 -- lA- V1 4.

We thus observe that the A -flows along the directed cycle { 11) {41 - { I are equal; that
is,

A I - V14 - A4 - V41,

and so

(26) AI-I=A4-2.

Thus, we have determined the difference between A, and A4 .
In exactly the same way, from the directed cycle {2} -13}--1* 2} we see that

f27) A,-3 =A 3-2,

thus determining the difference between A2 and A3.
At the next step of the algorithm, consider the modified balance equations for the

edge cut (A,A") where A={,41 and A'={2,3}. Observe that for A={1,4}, the
left-hand side of the modified balance equation

(28) max A,-V,= max A -V.,

can be written as A.,' A

max (AI - V,, AI - V1, A4 - V42, A,4- V43);

that is,

max (At-4, At -3, A,--6, A4 -5).
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We have previously determined that A4 -Al = 1, and so the maximum is achieved by
A,- V,= A,-3, and the arc of maximum A-flow out of {, 41 is the arc (1,3).

In a similar fashion, examining the right-hand side of the modified balance

equation (28), we determine that the maximum A-flow out of {2, 3} is achieved by
A3- V14 =A3-4, and so the arc of maximum A-flow out of {2,3} is (3,4).

We now consider the directed graph G 2 =(V2 , E), with V,=111, 4}, 12, 3)) and

E, = {(1, 3), (3, 4)1 shown in Fig. 2. Note that E2 is the set of the arcs of maximum
A-flow out of the edge cuts in V,.

X1 - V1 3

e11,41 12,31

A3 - V3 4

FIGj. 2. The graph G, of Example 2.

Observe that G, has a directed cycle { 1, 4} -{2, 3} --,{ 1, 4}. Now note that A 1- V,
is the maximum A-flow out of {1, 4} and A3- V 4 is the maximum A-flow out of 12, 3)
and so

A, - V, 3 = A3 - V34;

that is,

(29) A,-3=A -4.

Combining (26), 127), and (29), we obtain

(30) A, -3 A- 5 = A.-4=A4 -4.

We now know the pairwise diflerences between all of the A's, and so we do not need
to consider any additional edge cuts. To fix the values of {A,}, we use the value of p
to give

max A, =p = 5.

Since, from (301, A, is the largest, we set A= 5. We thus obtain the solution to the
modified balance equations:

A1=3, A,=5, A 3 =A 4 =4.

The principal idea used to solve the modified balance equations in Example 2 is
summarized in the following lemma.

LLMMA 2. (1) Given A q Xfor which we know the pairwise differences between all
the A,'s for states in A, we can determine the arc of maximum A-flow out of A (without
knowing the A, *s themselves).

(2) Let At, A 2 ,' ' , AP be a partition of X and suppose for each AA we know all
the pairwise differences between the A,'s for all states in Ak. Let (4i, jA) denote the arc
of maximum A-flow out of Ak. Construct the directed graph G = ( V, E), with V=
(A," , A. 1 and E ={(i, j), , (iP, j)}. There exists a directed cvcle on G. If
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{A.,," , A.,} is the list of vertices, in order, along the directed cycle, then the A-flow
on the directed cycle is constant; that is,

hA ,-V,,- ,= .... = -V ... ".' .... .

and we can determine the pairwise differences between the values of the A,'s Jbr all the
states in U'., A.,.

Proof (1) Without loss of generality, suppose A is the set of states { 1, 2, , r}.

Let a,:= A- A,. (We know the a's.) Then

max ,-V,,= max Al-a 1 -Vi, A- min (at,+V,,).
A.jI,.' i, A jc A' - A4j A'

Thus, the arc
(i*,j*):= arg min (a,+ V)

i, A~j, A'

is an arc of maximum A-flow out of A.
(2) The out-degree of each vertex of G is at least one, and so from elementary

graph theory it follows that G has a directed cycle. Suppose
A., - A. - - • --+ A.,,, - A.,

is such a directed cycle. Then we have the situation shown in Fig. 3. Now (in,, j) is
the arc of maximum A -flow out of A,,, and so the A-flow on this arc is not less than
the A-flow of any arc into A,,. In particular,

A,- V,, V .,, - Vi' for k ,1, m,

where, for convenience, we implicitly identify i,, with i,, and j,,, with j,,,. Thus,

h, - , , =hA , -V ,,V. "." As" ,,, i "', i ,

>h, - V,

>=A , - V , n.

An, ,,. n3,

In t l,l 10l o"n3

FIG. 3. A directed cycle of maximum A-flows in Lemma 3.

I

.. n 1
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Therefore, the A-flow on the directed cycle is a constant:
(31) Ai",-V i =A1.-V ; ..... Ail" -Vil J .

For each A, in the directed cycle, we know the pairwise differences between the Ais
for states in A,. Using (31) we can now easily determine the pairwise differences
between all the Ai's for states in U'., A,,. 

The algorithm for solving the modified balance equations is outlined below.

ALGORITHM TO SOLVE MODIFIED BALANCE EQUATIONS.

Step 1. Set Al' {i} for i = 1, • • •, IX1. We call the A,1s coalitions at step k. Note
that for every i, the pairwise differences between the A-values for all states
in Al are (trivially) known. Set A := {A, Al, • •., Alt}. Let N(I ) = IA'I =: the
number of elements in the set A' = number of coalitions at Step 1.

Step k. Given Ak := {AI, A2,., A,.,}, where for each A' c AK the pairwise
differences between all of the A,'s for i's in Aj are known, construct A"' as
follows. Using Lemma 2, identify the directed cycles in the graph. (There
exists at least one directed cycle.) The elements of A k + consist of the directed
cycles identified in the graph, and those A k Ak that are not in any directed
cycle. (More precisely, if {A,,, At, . . .- , A.,,.} is a directed cycle, then U 7', A,
is an element of AK .) Note that for every A, A A , the pairwise differences
between all of the A,'s for i's in A"' are known. Furthermore, if N(k):= JAKI,
then N(k+1)< N(k).

Last Step. Stop when N(k)= 1. Note that the pairwise differences between all
A,'s are known, and the A satisfying the modified balance equations can be
obtained by a translation by using the given value of p. 0

4. An algorithm to obtain all solutions of the order balance equations. We now
characterize all solutions to the order balance equations, and describe an algorithm
for generating all these solutions. To do so we will use the coalitions JA~k} generated
by the algorithm of the preceding section. Let us call A, - Vq and 3, =/3, V, as the
A-flow and 6l-flow, respectively, along the arc (i, j).

LEMMA 3. (1) If (i,j) is an arc of maximum A-flow out of Al, then it is also an
arc of maximum fl-flow out of A .

(2) 1f {A' , , A k} is a directed cycle obtained at step k, then the /-flow along the
directed cycle is a constant.

(3) If the /3-flow along the directed cycle {AI,-•, A} obtained at step k is -c,
then the f-flow along any directed cycle obtained at step n > k containing A, = U I A ,
as a node, is also -oc.

(4) 1f the fl-flow along the directed cycle {A, .. ., A'} obtained at step k is _-0,
then for every i, jE A' := UP , A,, there exists a path (i = i, it, , iq =j) such that
i,.cA" ana0l,, . for05m!q-s .

Proof We will first prove (1)-(3) by induction. Consider k 1. Since At is then
just a singleton, say Ak = {}, an arc (i, m) of maximum A-flow out of {} is just one
for which V,. = min. V,,. Clearly this is also an arc for which /3r, V,. = mine /3, V,,.
Now suppose that (A,. , A'} is a directed cycle of such maximum flows. Then an
application of the Order Balance Theorem to each Ak shows that 81.. fl = 3 .. , .
Suppose now that P312 = 123 pt /3,, = -o. Then if (i, m) is an arc of maximum
fl-flow out of U,"=, At, clearly . = -x. Thus the assertion is true for k = 1.

Now suppose that the assertion is true for 1, 2, , k - 1. Consider a coalition
A". If the /3-flow along some directed cycle {A", -. , A"} at some step n < k with
Alk U, A? was -oo, then clearly the maximum f-flow out of A' is -oo, and so any

I
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arc out of A1 is an arc of maximum 1-flow. On the other hand if the ,6-flow along the
directed cycle {AI', -, Aq} is _-0, then the differences between the 3i's for states
iE Ak are the same as the differences between the A's, i.e.,

(32) /3,-3 = A, - A, for all i, j E At,

and so the arc of maximum A-flow out from At is also an arc of maximum 3-flow out
from A/. Moreover, if {AI , , Ak} is a directed cycle at step k, then an application
of the Order Balance Theorem to each A' shows that the 13-flow along the directed
cycle is a constant. Finally, if this 13-flow is -o, suppose that (r, m) is a maximum
flow arc out of Uf 1 At. Suppose that re AI. Then clearly max A5.,' Aj I-fir,, and
so 3,,, =-0. This completes the induction and the proof.

Finally, to see (4), note first that from (1), (2), and (3), the 13-flow along any
directed cycles contained within At * is 0. Since At is formed as the union of such
directed cycles, the result follows. 0'

Motivated by (3) and (4) above, we introduce the following definition.
DEFINITION 4. We shall say that i is recurrently connected to j if there exists a

path (i= i, i,'-- iq =j) with f,.,., ..... 0 for0-m!q -1.
We shall say that a set A q X is a recurrently connected set if for every i, j c A and

k E A, i is recurrently connected to j but not to k.
From Lemma 3 it follows that recurrently connected sets are precisely those Al's

for which the 13-flow out of At is -cc, while the 1-flows along the directed cycles
contained within A/ are =>0. Note also that the recurrently connected sets form a
partition of X.

We now proceed to determine which sets are possible candidates for being
recurrently connected sets. Consider a typical candidate At '. Let denote the 13-flow
on the cycle {A ,.". , A}, where A +"- U pIAk,. Then if (i,,,J,,) is the arc of
maximum flow out of A. (and, by construction, into Ak,,)_d,), we must have

oa =& v,,.j, = i j,- ,:=. . . Yv,, 0,

max 13,- V0,<0, max 03, -p.

We will now attempt to determine whether there exist {13,: iE A I'} that satisfy these
conditions. Note that if this is not feasible, then A,' cannot be a recurrently connected
set.

Let (x,y) denote the arc of maximum 1-flow out of At"'. Then 3, < V,,. Fix m
to be an arbitrarily chosen state from Ak''. Then for every state h c A/ we know the
value of (3,, -3,,) from Lemma 3 above. Let us define

G := Ph - 3,.

Then

-;13, - V,,j,

= P.. + ci, - v,

.- ,.,,.

< Vy- 4 + , - V,.,, =: M,.

giving an upper bound on 9 .

We must also satisfy the constraint maxi,A', 3, _--p, and so let

0:= art max, .
,e A1
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Then it is clear that 3, max,, - 3. Thus,

p---13,.

= 13,., + 4'

= ,- ',, +

=,, - V,,. + Vi,-, + 4
F + i'. j, _ ,+ ,

and so

-p- V,.j, + M,-4=: M,,

giving yet another upper bound on 3 . (Note. If At={i}, then M, =minj Vi and
M4 = p.)

Any choice of ; from the interval

fl(Ak+'):= [0, M,)f-[O, Mw]

will allow assignments for the recurrence orders of states in Al" consistent with the
assumption that the coalition At'+' is a recurrently connected set. If Q(A ) = 0 then
then there is no assignment, and so A/*' is not a recurrently connected set.

We still need to determine the set of all recurrently connected sets. To do this we
construct a rooted tree having the coalitions produced by the general procedure as
nodes, and having a directed edge from coalition A ' to A" if A"*';? A' ". Hence,
the root of the tree is X, and its leaves are the singleton sets {1}, {2},. • , {n}. Let D,
be the set of the leaves of the tree that are descendants of the node i in the rooted tree.

We say that a set E of nodes is a proper cover if

U DA=X

and

D.,flDA.=0 for A A'.

Now the algorithm to determine all the solutions of (15), (8) proceeds as follows.
Let a set --:= {Aj, A, ---, A} be a proper cover. Now we will determine whether E
can be a set of all recurrently connected sets, as follows. First we determine fl(A,) for
every A, c E. (Note that if we guess X to be a recurrently connected set, then
M(X)=[0, Mj, since the M, upper bound is +cc because there is no maximal flow
out of X. Also, if we guess the singleton Ji} to be a recurrently connected set, then
l({}) = -x U([0, M)fn [o, w.]). If anI, of the fD(Ad's is empty, then the guess E= is
not a feasible set of recurrently connected sets. If ever' fl(Aj) is nonempty, then let
:--sup WA). If this "sup" is not attained, then we cannot assign p to any state in

A, If this "sup" is attained, then we determine for each such A, whether, with the
choice of I, there is a state i, E A, with 3, = p. If no such state exists for any A,, then
again E is not a feasible set of recurrently connected sets. Finally, if there exist such
A,'s then let E() be the set of all such Aj's. Now, the set of all solutions corresponding
to S is obtained by picking, in turn, an A, from 4(E), fixing its flow as 8,, and choosing
all other f ,'s arbitrarily from the fl(A,)'s. By checking every proper cover HE, we thus
determine all solutions to the order balance equations, as the following theorem shows.

THEOREM 4. All solutions to the order balance equations can be generated by using
the method described above.

• I
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Proo. Suppose /3 satisfies the order balance equations. Then for this solution
determine the set 7 of recurrently connected sets. This set must be a proper cover.
For this set H, there must be some A, with corresponding 3-flow equal J,. Now
determine the /-flows on the recurrently connected sets. We generate this solution 13
when we choose 7 as the set of recurrently connected sets, and A, as the coalition
with maximum flow equal to A, and assign the correct 3-flows on the other recurrently
connected sets. 0-

This algorithm takes an exponential in JXJ number of steps, due to the necessity
of checking all proper covers. However, the complexity issue is not the primary concern
here, since the problem of asymptotic analysis of the stochastic process is not a priori
known to be a problem resolvable by a finite algorithm.

We illustrate the procedure for determining all solutions to the order balance
equations.

Example 3. We construct all solutions to the order balance equations for Example
2 when p = 4. See Fig. 4 for the rooted tree. We check the proper covers:

(1) HE {X}: ((X) is empty, so X cannot be a recurrently connected set.
(2) {1, 4}, {2, 3}}: Using the method described above we obtain

9,=a, 32=4, 133=3, 634=1+

where 1 !_ a < 3.
(3) H = {{1, 4}, {2}, {3}}: max,/ 6 <4, a contradiction.
(4) -= {{ 1}, {4}, 12, 3}}:

3= y, 32=4, 13 -3, 34=0

where Y =-x or0=y <l, and 0=-ccor0_<- 2.
(51 =_={{l1,{2},{3},{411" max,, x 3<4, and so {{I}, 421, {3,{4} is not a set of

recurrently connected sets.

FI(, 4. The rooted tree of Example 3.

We have checked all proper covers. Hence the set of all solutions is {(a, 4, 3, 1 + a): I -
a<3}U{(y,4,3, O): y=-oo orOy< l and 0=-0 or0_0<2}.

How can nonunique solutions to the order balance equations arise, and what is
the implication of such nonuniqueness? First let us consider the case where a unique
solution exists. Since such a solution is uniquely determined by the algorithm, it is
clear that the recurrence orders of the states, and thus the rates of convergence of the
transition probabilities, depend only on the V 's in the transition probabilities p,,(t)=
c,,F(t) , , and not on the proportionality constants {cqj. However, in the case of
nonunique solutions, the following example shows that the recurrence orders may even
depend on the proportionality constants {c,j}.
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Example 4. Let X={1,2,3} and V, =max {O,j-i}. Let c,3:c,= 1, c3, l-a,
and c.,= a, where a E (0, 1). Set q, = 0 for all other i, j. See Fig. 5. Let the cooling

schedule be F(1)= l1t. Then the complete set of order balance equations obtained by
using all edge cuts is:

P v., =3 3 0 V 2, /330 G 31  1eV,",
max (02(D V.,, 3,0 V,) = max (130 1Y2, 13 Y,,),

with the maximum given by,

max13, 1.

The assignments

02 =1 /:=y , 03 = -X

satisfy the order balance equations for every y -x.} U [0, 1). Thus any value of 3. < I
gives a solution of the order balance equations.

However, a calculation that can be found in [8] shows that the correct order of
recurrence of state 2 is

32 = a.

Thus, the order of recurrence, and the rate of convergence of the probability Pr (x( t) = 2)
to zero, depends on the proportionality constant c3, = a involved.

Based on the above results, we obtain the following property of' I" orders of'
recurrence of the states in a recurrently connected set,

LFM MA 4. Consider a recurrently connected set A.
(I) Jf P, c 1. br some i c A, then f0, E R for a,'! j -A.
(2) Ifj fr some i c A, 3, = p, .for some p, E A, then for every j c A, 13, p, for some

p, A.
Proof The proof follows immediately from (32). 0

P23 1"i ,q

P/3(t) (r)
2

121 P32(t) =

P31 Wt a

f t

Fici. 5. The Alarkov process of Example 4.
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Thus all recurrence orders in a recurrently connected set are of the same type,
i.e., either they are all real numbers pi, or they are all of the type p-, or they are all
-oo (see Definition 1).

This gives us the following lemma, which completes the proof of Theorem 1.
LEMMA 5. Suppose the rate of cooling is p = p E R, with p > 0, i.e., the maximum is

achieved in Definition 3. If there is a state i c Xfor which 13, = p-, then lim, -, Pr (x(t)=
i) = 0.

Proof Suppose A is the recurrently connected class to which i belongs. Since all
arcs between recurrently connected sets are transient, it follows from the Borel-Cantelli
Lemma that along almost every sample path w there can only be a finite number of
transitions between different recurrently connected sets. Hence for almost every w,
{x(t, o)} converges to some recurrently connected set. Hence the limit lim,- Pr (x(t) E
A) exists. Now we show that this limit is zero. Suppose not, i.e., suppose
lim, ,, .14 r,(t)= >0. Then it follows that . A 7rr(t) = +X. Hence for
some j c A, 63i = p. But then by Lemma 4, /3 E , which gives a contradiction. 0

5. Weak reversibility and simulated annealing. We now turn our attention to the
special class of Markov chains arising from the method of optimization by simulated
annealing. Recall that the Markov chains in this class satisfy (I )-(6) with the special
choice of

V,:= max {0, W, - W,}.

In [7] it was shown that under the "symmetric neighborhood" assumption, c, > 0 if
and only if c,, > 0, the orders of recurrence satisfy the following detailed order balance:

/3, =/3,, for every i, j E X.

It is easy to see that the detailed order balance above is equivalent to the sum of the
order of recurrence of a state and its cost being constant on recurrently connected sets.

In this section we will show that this constancy property of the sum of the
recurrence order and cost on recurrently connected sets continues to hold under the
much weaker assumption of "weak reversibility" introduced by Hajek in [I].

DEFINITION 5. A state i is said to be reachable from statej if there is a sequence
of states j= io, il, • • •, i,= i such that c,.j,.,,>0 for 0!-s k!<=p- 1.

DEFINITION 6. A state i is reachable at height H from j if there is a path from .
to i as in Definition 5 for which W : H for 0:- k-p.

ASSUMPrION l(Weak Reversibility). For any real number H and any two states
i andj, i is reachable at height H fromj if and only ifj is reachable at height H from i.

In what follows we assume weak reversibility.
THEOREM 5 (The Potential Theorem). Under Assumption 1,.for every recurrentl'

connected set A there exists a constant a(A) such that /, + W, = a( A) for every i E A.
Proof We fix our attention on a particular recurrently connected set A. Assume

to the contrary that A can be partitioned into equipotential sets C,, C,, • • •, C, such
that /3, + W, = a(Ck) for every iE Ck, where the a(Ck)'s are distinct constants. We will
show that there is only one equipotential set, namely, A.

For each equipotential set C, determine an arc of maximum /3-flow out of the
set. From Lemma 2, there exists a directed cycle of these equipotential sets, and the
,3-flow along the directed cycle is constant. Moreover, from Lemma 3, since A is d

recurrently connected set, these /3-flows are all nonnegative. Without loss of generality,
label the sets along the directed cycle C,, C2, ., Cp such that the constant a(C,) f
associated with the set C, is smallest. Let (i, j) be the arc of maximum /3-flow out
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of the set C. By construction, iE a C, and j C1,+,Imodp and

31,1j, = 'i
3 

J2 = ... = ,..j,, - 
0.

Knowing that/3 0 we consider the two cases: (1) Wj, t W,; or (2) W', < W,
If case (1) is true then since j, is reachable at height W, from i,, by the weak

reversibility assumption there exists a path from j' back to i, that does not go through
any states with costs larger than Wj,. Let (k, I) be the particular arc of that path that
exits C.. Note that

3, .J, .

--
3

kl,

because/3,: ,. is the arc of maximum (3-flow out of C2 If8kl - 0 then 3 = 13 k + Wk -W.

If 3k < 0 then P, + Wk - W, < 0. In either case, since 6, - 0,we have that

3,,,I =A+ W,- Wi-l 3 A + Wk- W,.

Now by the weak reversibility assumption, Wj, = W, and so

3, + W, ,_3k + W1;

that is,
a (C,) a (C-),

which is a contradiction.
If case (2) is true, then there is a path from j, to i, that does not pass through

any states with costs larger than ii. Again, identify the particular arc of that path that
exits C, as (k, I). Note that

A3

--Pkl.

Using similar arguments as in case (1), since 3, - 0 we have 3, =>(3k + WA - W. Now
by the weak reversibility assumption W,, _- W, and so a(CI) = a(C,), which is again
a contradiction.

Hence there is only one equipotential set, A. fJ
Since W,+ 3, = a(A) for all iE A, where A is a recurrently connected set, we

obtain the following necessary and sufficient condition for simulated annealing to hit
a global minimum with probability one from all states i e X.

Let M := {i aX: W, ! W for all jE XJ be the set of global minima. We now have
the following definition due to [I].

DEFINITION 7. Let d* be the smallest number with the property that for every
i E X there exists a path (i =i, •,i) with c,,,> 0 for 0!=5 k:-5 p - I and ending in
a minimizer *, E M such that

W,, -W, -d * for k=l,... , p.

We shall call d* the depth of the minimization problem.
THEOREM 6 (Necessary and Sufficient Condition to Hit Global Minimum With

Probability One). Suppose that weak reversibility holds.
(1) If , (t)d* = +00, then for every initial condition x(O) E X,

IN
lim sup- Y Pr(x(t)a M)= 1,

N-.r N ,

and the global minimum is hit with probability one.

I.

t~
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(2) If y, E(t)d*< +0, then there exists an initial condition x(O) E Xfor which

Pr (x(t)E M" for all t- 1)>0.

Proof The proof is the same as in Theorem (4.6) in [7] except that if (i
in, • , ip =j) is a path from i to j with c .i , > 0 and W,, - Wi :_ y for 1 k:_ p, then
instead of using the reversed path (j = ip,-, i0= i) given by the assumption of
symmetric neighborhoods, we use the path (j = 10,' . , l = i) with clI.,,>0 and
W, - W _< y for 1 :- k!- q, guaranteed by the weak reversibility assumption. 0i

The same condition , E(t) * =oo has been shown earlier by Hajek [1] to be
necessary and sufficient for lim,,. Pr (x(t) E M) = 1, i.e., for convergence in probability.
Thus while result (I) above is weaker than his, since it involves Cesaro as opposed to
regular convergence, the result (2) is a stronger sample path result.

The above result has been proved earlier in [7] under the stronger assumption of
symmetric neighborhoods, c~j > 04: ci > 0. Moreover, under this assumption Connors
and Kumar [7] have proved a detailed balance result that we can obtain as a corollary
of Theorem 5, as we show below.

COROLLARY I (Detailed Balance). Under the symmetric neighborhood assumption,

P30 =Pij for every i, j E X.

Proof If i and j are not neighbors, then PIh = Aij = -00.
If i and j are neighbors and i E R and j E T, where R is the set of recurrent states

and T is the set of transient states, then

Pik for all k

and so

-(x = max Pik = max 3
k, -- 3,

k~tj k~j

showing that /3,, /3,, = -X. A similar argument holds if i E T and j G R.
Finally, if i and j are neighbors and i, j E R, without loss of generality let us

assume that W _ 1 4. Then f3l = i -, 0, and so i and j belong to a common recurrently
connected set. Hence by Theorem 5, 3i + Wi =3 + W. Since flj =fl, and 3i,
3i + W - W,, it follows that 3, =3j,. 0

Note that by the above results, if the order of recurrence of even one state in a
connected component is known, then the orders of recurrence for all the states belonging
to the connected component are determined. However, as Example 4 shows, it is not
always possible to determine the order of recurrence of even one state in a connected
component from the order balance equations alone. In that example, the connected
components of recurrent states are the sets {1} and {2}, and the detailed balance
equations do not determine the order of recurrence 32 of the single state in the connected
component {2}. The reason for this inadequacy, as mentioned earlier in Example 4, is
that the orders of recurrence do depend on the proportionality constants cj involved
in the transition probabilities. In any case, the fl-flows do satisfy Corollary 1.

6. Conclusions. The notion of order of recurrence provides a novel approach for
analyzing the class of Markov chains whose transition probabilities are proportional
to powers of a time-varying parameter e(t). These recurrence orders satisfy a set of
balance equations, and the Markov chain converges in a Cesaro sense to the set of
states with the largest recurrence orders. We have given an algorithm for generating
a solution to the order balance equations and have also provided a method for
characterizing all solutions to these equations. The algebraic methods presented in this
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paper for solving the order balance equations are not always sufficient for determining
the recurrence orders. In some situations where nonunique solutions exist, the orders
of recurrence can depend on the proportionality constants involved in the transition
probabilities, and not just on their orders of magnitude. This problem remains an open
issue. The method of optimization by simulated annealing falls within the framework
of this class of Markov chains. We have shown that if the Markov process is weakly
reversible, then the sum of the recurrence order and the cost are constants on each
sets of states connected by recurrent arcs. This allows us to determine the necessary
and sufficient conditions on the cooling rate for the optimization algorithm to hit a
global minimum with probability one from all initial states.
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D. P. Connorst and P. PL Kumar
Department of Electrical and Computer Engineering

Coordinated Science Laboratory
University of Illinois

1101 W. Springfield Avenue
Urbana, Illinois 61801

Abstract

We consider generalized simulated-aasealng type Marlow chains timswiahomogetaeos proem Into a purely algebraic problem of solv-

w her the trnton" probabilities ane proportional to Powers Of a lag the balnce equations.
vansing emai paraete. 0ne can associate with each asat an A sigaillcast moi-~n o tdying such Marko, chains Ua in

order of recurrence which quatfe he asmptotic behavior of the fact that lnathe method of optimization by simulated annealing, if
the state occupation probability. Thei orders of recurrence salisfv {W.) Is the cost function whome minimum is sought, then one obtainir
a fundamental balance equation access every edge-at In the graph a Marks, chain with,
of the Mathew chain. Moreover, the Marhew chain converge in a
Cesmo-sesue to the st fsates having the largest recurrence orders. NoQ) ~)5SWW
We provide graph theoretic alWrthm to determine the solutions of
the balance equations. Dy applying these results to the problem of Thee simulated annealing Is a special case where the powers Vq sat-
optimizatlom by simulated annealing, w show that the stum of the isfy
recurrence order and the cost Is a constant for all states is a certain
connected set, whenever a *weehkreversibility* codto Is Vaslm mx(OWj

for sme. (WJ).
1 ItrouctonIn order to p the above approach for analyzing such time-1 Intoductonlahomogeneous Marhay chains, It is necessary to be able to sove the

We consider Auite State MarksV Chains (2(0)) with trniion prob- balance equations. However, there can be non-unique solution to
abiitlas of the type, the balance equations. We present graph-theoretic circulation based

pij(*) -algorithms to obtan e solution, as well as ellsolutlous, to the balance
equations. We show by an example the Interesting phenomenon thatwhere EQt) is a small parameter converging to Sero Is a previous such use-uniqueness can arise when the asymptotic properties of the

psar (I] we have Ahown that if one defies 'orders of recurrence by Machay process, and the recurrence orders, depend sot just on the
(more precise definkios are given in Sectlon 2), eaponent. Vij, but also on the proportioal constants cij.

- By applying these reults to the Marks, chain arising from the
A -a sapke a 0: f CON'Q) - +oo0, method of optimization by simulated annealing when the Oweak me

fto versibiligy" condition of ifajek [21 holds, we show that the sam of
than the recurrence order and the cost Is a constant on sets connected by

recurret arcs. This allowsaus to obtain the necessary and sufficient
(1) these recurrence orders satisy a balance equation, condition hor the optimization algorithm to hit the global minimum

with probablty 0ee. Our necessity result Is a stronger sample path
max (A - VW- MAX j~ - VW~, reslt than is found in (21 or 131.

if~j"@Background

for verysabet A &WTsitslhlis [31 has also isnetiglated Marks, chains with transition
(Hi) the Marks, Process converg, to the set of st with the largest probabilities proportional to powers ot a small time-varying parame-

orders of recureces. ter. Nis analysis was based on observing that due to the slow varia.
tion of (c(l)), one can employ bounds on the state occupation prob-

This provides a novel approach to analyzing the asymptotic be- abilities hr sttionaery Marksv chains, where cQs) is held constant,
havior of such ieloogeou s Marksw processes. Specifically, to obtain bounds (W the tlmewluhomogseous case His approac is
one -s (1) to solve the balance equations, and then (U) provides quite different herm ours.
the limiting behaior. Moreover the orders of recurence ale provide Based on an analogy to the physical process of' annealing, the
information about the rates of convaergece of the state occupatio, sequence t(t) is called the 'cooling achedsle,' and just as in the
probabilities. This approach via recurrence orders therefore convert physia analogy It plays a hey role in determining asymptotic be-
the analytic problem of determining the asymptotic behavior of the havior. It was shows by Geman and Geman (41. Mitra, Romeo and

Sangloveasi-Visaell (51, and Gidas 161, that simulated annealing
rueset ee eenssp.,tj I pes bpAfOl Cetnt N AF~l. converges in probability to a minimum of'the optimization problem

U64161 IISARO Cenasalt ie1DL43-I-te. 4t ad JSEP CeAuract 14. Provided M'(OT n +00o for ar enough p. lHajek (21 has deter-
1141014 e4 c esss. mindW the necessairy and su14CIeNt Conditions On the Value Of p hr the

Ifew wM sh Ise Bolanhss Unt mbtew Gorpsnl. iTmss J. Wuise algorthm to converge in probabildy to the minimum when a *weakI.. O.W ce. es6te Yeshew adias. NY lowes reversibility' assumption Is satisfied.

M6H2531-VOSA10000146$1.ooe 1988 IEEE 1496



12 Orders of Recurrence and Balance Equa- Proof. See 1ii. '
tions Knowledge of the A's provides useful Wnormation about Lke

I asymptotic properties of {Xa9)). The folowing theorem shows that
Soader a Idarliov chain over a mie state space X whom. transition the tiife-iithflfigsot Uarhov cha coavotges in a Cesou Uns
Sprobabilities arm proportional to powers of a vanzcieg time varyinag to the set of states having the largest orders of recurrence.
parameter c4t); that is, the tranaios probabilitiewp,,(t):= Pr(z(t +

)=jig(') - 0 "a given by, Theorem 2.1 Let M be the act of utates wish the largest orders of

where Then
0 :5Vii:5+0o, for all j EcX. ij, (2)1()

ci a0, forall Qje X, i jj and ii 1c w haili. (3) loNPIt )E )

Legarding the small parameter (t).we Will ssume that, P,,.e Sae [7). U
a 4() Wran e V(4) Our goal thereore is to determine the recumance orders, and cuiti.*

0c~~cI IO~M*Z~ 4) cal ttuwig b the Wlowing etuetabished a 1, wich shows
3M < oo Wak that 4(t)! A hh(.) whenever 1'! 4 (5) that there is a lendamental balance of recurrence orders across *very

ad edge-cut ia the graph of the Mahov chain.

t (f< 0, bee ea 6p (1,1o)() Theorem 2.2 (Order B11ance)

-1whas folows we will ssame tha is (1-2) we have ma ,- mxP,. fr wA X. (0

C4a0 0 Vii as +00 Eiventl, using the -9- notation and (7),
'hich is essly without mlose ousmait. m A e A V- Pa i e V Io revsrACX. (11)
Let iri(t) aPr(z(t) a Q) be the probabliy distribution o( s(t), igAjdAf i4A.4Ad

ad vii(l) :aPr(zQ8) - i.z. &I 1) - j) he the probability of a Pro se 1.1
transition fromnta 1 i to0j at Usme t. Note tha through Theorems 2.1 and 2.2 we have converted

We define the recusVeno aesa 1r the states end transitioan Of the problem of determining the asymptotic properties of the time-
W Marhov procesu asellows. laamogesoea Marker chain into an aeski problem of solving

Definition 2.1 YUe enr of --- mi *I a stae i G X, deted the balance equatlama (10).
A. is

-00 r(t)c < +0, 3 The Modified Balance Equations

A~~a{P <nu ~~:~ts~ +00. Note that if MWA..Ax)stsY (11), t (~'-A ,P

p Fp -so~ e : M 48'E( ) -+o*). ,.,Ax 4) am Aitisy (11) 6W every 4, ILe. the solution set
is tramstiobn ineersn Thun the squation (81) which Amxe the me&

AJ say a stawes is tuuawieau if A a -as; otherwise e say the stat Pawn of the A's needs to also be taken, WAt acOnt.
isFCTIA However, (11, 8) can together still posss amsoaique solutions 6r

bs a simsilar mannerm we defin the sentr of sawcurrumo of the troa. sulcsd small values of p. In this section, we will ohow how ooe
tiso fmsi to j.Ais, by repacig 8(t) with vss5 Qisthe delni- can abtainone solutionto (11, 8); in thenext sctoawe show how

-,m above. Agaia, we aW this traition from ito j is ,uasdeu if to obtain ea nalutione
A, = -cc-; otherwise we ay the transition is ree--na. It is convenient to consider the following T mdifed' balance equa.

It is S ala oveniet to defin A, the entaer of inella of (I(t)), at tion, which as we show is the sequel, always posses a unique Wo
JOWL latiun. Give pa sd Vii a 0for ij a 1,.,XJwiths i j,

Dadiiie 3.2 The en*e / te sonfing schedul (4(j)), *o p, consider the problem of determining A a (A, ...... xj) such that
is efm 4 A - Vi ma A- V forevery A CV.1.. .)

am=dx< 4. l Ai. (13)
p Fi mmfe 2: 6: m r)- +Go). We cal (12,13) the Imodilledw balance equans. Observe that (12)

not relasio--hip between A-, Aj ned p Is Sime In the bellowing dilfees rom, (11) In that the opesdtiom 1- Is used in plnce of 'e."
Lemm 2U. It will be assesing in the seque go define ti. operuia Also, the As can be negative in (12).

Sas keljw. We have introduced the modified balance equastions in order to
do.~ jfd<b avod the diltive in headng -ccthat occur under teeo" p-

lf- b~ eraice. Ie belowing theorem gives properties of solutions to the
order balance and moodilled balance equations

=aa 21 A; 'iii A ev eiIded i3 Thorem 3.1 1. if A motis udo mad4We baheno eustionh for

A,-Ae ~ ~ ~ ~ ~ a 0" OeWe~jX eeesesV.*hwsdAed
~ ,~ Aerrfoeh aa e A(1u. /r4)d - 7

TA-A~~~~~~~~~~~ ..jsa. evem qu AsP l,)If60 ~ P
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I . For ever givnp P W V, A e uque a ~ oluiinA to the We have previously determined that A4 - A, a 1. and so the max.
mmed~af hln. "e"ee Moreover, Ase sluto for differant Isses Is achieved by At - V3 - A, - 3, and the amt of maximum
wesc of p ams fronstates of coech othe. A-flow out of (1,4) Is the arc (1,3).

In a similar fashion, examining the US of the modified balance
L. Whenever P it large mneuh ame~ ests aUiue souto to the Equation (18). we determine that the maximum A-low out o(1{2,3)

*eder balne equutions (11, 5). The ie5 uIW sosto am al Is achieved by A3 - Vs, 0 As - 4, and so the arc of maximum A-low

PrOOL see . 0 We now consider the directed graph G2 Is (V3,E 3), with VI

We now give an algorithm for determining the urnqu solution to {{,4),(2,3)) and E3 = {(1,3),(3,4)). Note that En is the set of
the modifie balance equations. An illustrative example is cone- the arc of maxmum A. low out of the edge cuts in Vs.

Observe that G2 has a directed cycle (1.4) - (2.3) - (1,4).
NOW Mote that At - V13 If the MAXIMUM A-low out of (1,4) and

Example3.1 Let jr- 3and As - V3 is the cmaimm A-flow out of (2,3) and so

4 3 1 A, - V13 a As - m

v.i v i u(2 6 3 *l ha A -3= 4A -41. (19)

Owr goal is to determine A a (A,,...,A4 ) wIh sUat=fe (12, 13). ~ (6 7 9 ie
V% shmllrolorto A 4-4i, as the A-flowalong the arc (Q,). Cosider A - 3 - As 3 UA- 4- A-4. (20)
SrA the modified balance equation fat the Wdg cut A x; (i),

We sow know the pa&wwise differcrnces between ol of the A.'s, and
mag A-j - 4m Aj - V. (15) so wedoNotnd to couder ayaddtional edgscts. To Rxthe

IN joVales of (Ad), we use the Value of P to sive,
Obserie that the LBS of (15) can be written as

Aj - *ii, - p-S~

, 41 Vq, Slace, Ium (20), Als the largest, we a sa & We Chu obtain
tad so the arc a(mxiauwuA-lw otof A =(i) is the rc (, I(i)) the solutlon to the modfied blance equations as,

whome

( &ot tht(i) mar not be ualque)
We sw coustruct the directed unph G, II (V.ER,), with Vt Th-rnia dau osletem 1Wblneeutosi

(()...4)) and (ij) 9 91 ij Is (A) Note that G1 has two TExa p al ideasedoI&lvthemlodingIeblacemtl&i
directed cycles (1) - (4) -(1) sad (2) - (3) - (2). Lo Exsiampl 3.1isumaseinteflongem.
as examine the A-lows on the directedl cycle (1)' - (4) - (1). JUI .
Since A, - VC4 is the maximum A-low cat of (1), It Is act smaller 1. Given A G X for wIleS we knew VUe peirwiue difference between
tha ny A-low inito (1), and esn particular all1At Ai'sjeA staesu inA, we cadetermine theerem fnumu

A, - V14 Z A, - V41 A-flow eut of A (witheut knowvinq th A.'s themselves).
A Id At. As,,A, e prtitinf X nd mpse fr cckAl,

Also, A4 - V1 Is the maximum A-low oat of (4) and a skne ll ~ifk a in dfeeobl e #k s f or 4 ttes
Aq - a Z & - 14- n A&. Led a,jj. denoted ten oef maximum A-fteweut o .

Contrc At direted grphG Is(V, 2),with V a(Al....,A,)
We thus oboeve that the A-lows alon the directed cycle (1) and B (,j). Q,,) 21.' crisis d directed cycle on
(1i- (1)e eu l; that is, G. f1(A .......- ) weit eof vertices, in eider, eleny the

directed cycle, then As A-lew en tCOe directedf cycle ia omstmnt;
A, - V4 Is A -tVais,

A -1IsA4 - (16 adwe an detrwmine A@epasu dijbences etween the vlues

Thus. we have determined the diffwenmo between A, ad A4. ef the A4 Is for el Ase stores n L 4-.

In exactly the m way, from the directed cycle (2) - (3) - peooe See 171-.
(2) we m tha The algoith hor solving the modifie balance equations is out-

As- 3aAs - L (17) Usnedbelow.

thsdoeermiig the dikeles between As and As. Mgorihbm to solve modified balace equations
As the am tep ofthe alleslthm,cosider the modified balance Step 1: Set Af a(i) fi 1,...,IXIWecllthe A'scolitons

equations hor the edge cut (A, AO) wheoe A a f1, 4) sad At 11 (2,3). at olepk Note that for every i, the pairwise differeces between
Obsev thathA-(1,4),theLlSo(themodiied balanequn- the A-value forals tasinA.1 are(trivially) known. Set A' :
tionmxA sV sa (A1.I, ..-. ,Aj'). Let N(1) - JI'I -- the nember of elements

max A4-ij- maxA'-j (18 ithe set AtIs mmber ofcoalitions at Stop1.

cam bewrittenu Step kI Glyn Ab:-(JA*I$ .. ,~ ) where fW eachA46 '

inax(At - V3. A, - V,A, - Va. A4 - Va); the pairwise differeucee between ald of thet A,s for i's in Ak ane
known, construct A*' as foows. Using Lemmas 3.1, identify

that is, the directed cycles In the graph. (There exists at least one III.
max(At - 4. At -J. 4, Aq - 5). rected cycle.) Theel to of Ah+" consist ofthe directed cycles
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idatiludl in the graph, and those A,4 E A* which ane aot in any for every statea A G A*' we know the value of(0, -A.) from Lemma
directed cycle. (Moar. preisely. it (A, A, ., AL) is a 41- 4.1 above. Let us deliae
rected cycle, thus UL , 4 s an element of A"'a). Note that
for every A*' Q A"*', the pairwise diffeecle between ad oif (r.A -a

the A.'& for i's !a A"' are kaowne. Furthermore, if 1(k) := IAtI, Thee
then NOk + 1) -C3()

let Step: Stop when 14(k) se 1. Note that the paitwise differences a P. + . , - Vj
between &Hl A'& wre known, and she A satisying the modified
balnce equatios canbe obtailed byatmnsulation byasiag the a0 5(+ -V,j,

gives valuesa(P. 0 Va -C,+4.0, , ,

Sv~ing an upper bond on 7.
An Algorithm to Obtain AUl Solutions of We mut als sat&sY the constraint max A :5p and so let
the Order Balance Equations

#:=usi max,4
a aom characterize eli sointloas to the order baLance equntioms, *

d describe a agorithm for generating ead chose solutioss. To do Then It is clear that All a am. &. Thu,
we wig use the coalitions (A:l generated by the alpdrthm of the A'

seding seui.Lo s call6- Viiand A-j A- , as theA-flow
d P-Jhis^ respectiviely, &lo"g the arc (4~j).

uimma 4.1 ,1. 11I(sj) is he eof ims %-flbw out of . A, -+ C
thrsen ites swe of a menDvus -wSt Al. A-,-C,+C

LIf (A ...4 is adirWcdpck okdedet8sep k, thes the A Y + Vh- 41+ Co.
P-flow vo usk h direwtiu cpck it lss .et. ads

FIf Lkte P @fo bWalg t Adiutd cc JAN,..., 4) akeinil a -F5 P- V44, C-: Mi.
stop khis -00. thm the PA. sWang Gal directed cych obtainsil giving yet another upper basnd os F. (Note: if Ajk a (ii, then
asesap a >k mteimim.Aral 1 A.#sedo te, islso -*a. M -misj nd Alz-p.)

1* As PaJb p sp. 1ke. * s cycl (A*&,...,A4) ebtsimsd al Any chaice atF jr r the Interva
,uep h i. Z 0, LUhiniery 4ij C.A+' ;- L gha
exits a ppth (i a i..,' a j) puck AM im. E AA ' awn~~i:-ma n itlo. mij
A....,, a 0Io 0S a S f- will allown ssgnmetafor therlcumracs orders of status Is A"'

rot ee(7.consistent with the uasuptia tAt the coation At' t is a recur-

Motivated by 3) send 4) above we Introducel tM fillowing deanj. 2dY coallaed "t If a(At') = # thea there Is no aigaflent,
- and so At*' Is nam a recurrently connected st.

We Stil need to determine the set of a&l recurrently couaected sets.

@fin 4.1 We eke as, &Wet is ruerrently ccted go To do thi we construct a sooled tme Wag the coalliou produced
Acrse exists a Pa (i a ies. ,it -)With A.~ ? 0 for by the genecal procedure as nods@. and having a directed edge from
Sm-: Sq- I. coalition A:+' to A! if A:+' 2 AP). Hence, the root of the tree is
We shaM seg W th so A G X is a recurrently conneted set ol X. &ad Its leaves are the singleton sets {1),(2),...,{it). Let Di be
r cvp , j A .MhkE6A4, iis mwurva* ueedfto j ina ot the at of the leaves of the trewhich am descandnts ofth nods

h. In the rooted tre
We say that a set Z of nodes is a poop.r cower if

From Lemma 4.1 It Uolows that recurrently connected sets are
mciy thnAt's forwhithe 0Iowot of At s -c, while the U DAM X
klwe along the directed cydeoe contained within Af am Z G. Note A"i

o that the recurrently conneocted se hem a j,rtti of X. and
We now proceed to determine which sets ane possible candidates DA flDA. a for A 0 AX.

being recurrently connected seets. Conside a typical candidate Nwteagd oleema l h ouin f( ,)poed
LetJr e.0th fi-Amm he ycl J, ....A,), bor uasros. Let aset I a (All, A2.... ,Ah) be a proper coam. Now we

L L, A!. Thea if (i.) is the arc of aiden. low as&tof will deteram whther!3 can be a set of all recurrently connected
,(Sell.by coestracionistAt+,W,).we me"have, seta, a knows. First we determine 1)(Ai) for every Ai e! Zef

sap of the fl(Aj)'s Is empty, then the gues Is nat a feasible set
7 A,- vuA ,. -vw -- -- A, -V. a 0, ofrecrealy coanected sets. If every 11A) sm-empty, thenlW

. ~~ ~Y :=,cO max 0(A,), and forchb Ai determine whether with the choice
of Yithere is a stae itGAtwihA-, = .Ifo ledhstae exsts lot
oop Aj, then again 3 is net a feasible set of recurrently connected

d noset. Flaally, ItheeeezletSuch A'sths let A() be the at of
am ASP.all such Ajs. NOW, the set1 Of All solut60ons correspoding to!3 IS

obtained by pleheg in turn, an At from A(Z). Saleng Its lowas,
iwinl now aawm to determine whether there a"s (A: A14+1) and choosing sa otha ri's arbitraily fromt the O(A,)Ls fly che$n
lich satisfy the. cond Kaoe that if this is sat fensibls, thin MMw paoper coestX, we thu determine in slutioes to the order
411 camno be a fares eatly aonetd e. balanc euations. Soe Ml far the preciss Prood.
Let (3,gj) denot he Vrc of "ml. plow out of A*'. Thin we ilustrate the procedure Far determiain al Solstice& to the

V". FU s to be an Setriy diesu state fromt A'.Te order balae euts.
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Example 4.1 We construct all solutions to the order balance equ- L. lfefr some ie A.- A -pj- for somea pi e R,. Chen for every
tianefor Lumple 3.1 whom s-4. Wcheckthe proper Cover@: j4EA. 0, -pfosome pi E R.

1. -- a (X): fl({l,4)) is empty, so X cannot be a recurrently Proof This follows immediately from the proof of Lemma 4.1. U
connected set. Thu all recurrence orders in a recurrently connected set are of the

2. 3 - ((1, 4), (2.3)): Usming the method described above we ob- sam type, iie. either they are all real numbers pi, or they ame all of
tamn the type P7, Or they are all -00 (see Definition 2.1).

This gives u the following Lemma which completes the proof of
a, 1h p= 4, p0i3 , 0 4  +Cs Theorem 2. J.

where 15 a < 3. Lemma 4.3 Suppose the rate of coeW* isp ap is , with is> 0,
3. B ((, 4, (2.13): ,P~yA <4. conradctins e. the naimum is achieved in Definition 5.2. If theme is a state
3.~~~~~~~~~~~~ G-(14,2d):mx 4 cerdctn X for which A - P-, then Unt,. Pt(z(t) = i) =0.

43-((l). (4),1(2,3)1: Proof Suppose A is the recurrently connected dam to which i be.
Ai7, A - 4. As 3. 04 -0 =e lp Since all amc between recurrently connected sets are transieont,

It Maows from the Dorel-Cantelli Lemma, that along almost every
whe 7 a-00 r OS 7 <, and 0 e -o or 0 0< I. samplePath wthere canaonly be a fienumber of ransitions be-

A < . ad so((1 4112,3) i ten different recurrently connected set. Hence ber almost every
5. 3- (t),2),3),(4): mnA 4 an me((14),2,3) ~ w, {(1,0I) con4verg tosome recurrently connected set. Hence the

not a e Of recurrently conmi--e sets. 1mUrn Dm Pr(xQt) e A) exists. Now e ihow that this Umit is

We have chechad all proper covers. Rabinthesad a(all solutionsIs 0- Sppos. not, I-e. suppose lm--wEigA ri(t) - A >0. Then
((, .3 1+a): : a<3) UR.3,):7- 0 O0:57< it follos that M d(S)p jOA Wj(9) - +*a. Hence for some j E A.

land$= ~~ ~ ~ ~ - p. But then by Lemma 4.2,A p4E 12 which- gives acostradiction,
landCa-o ei ~ 52).thu proving the lssem.&

How can nonunitue solution to the order balance equation arise.
and what is the implication of such aowe~uaun? Firt let uts con. 5 Weak Reversibility and Simulated An-
sidie the case where a uniue oldon exists Since such a solution is nealing
uniquely determined by the algorithm, it is cenr that the recurrece
orders of the stake, and then the rate of coevrsnce Of the tmne We ta urn our attention to the special class of Markov chains aris.
sitice probabilities, depend only on the Vis in the transition prob log fromi the method of optiiuaton by simulated annealing. Rtecall
a"lties pijt) a ci()Vd, and Mail as the prpo tioalt cosat that the Marko, chain in this doss satisfy (1-6) with the special
(Ci). However, in the case of rusm-unipe solutions, the following choice of
example shows that the recuirrence oides may even depend on the Vi :M max(O. W, - W).
the peepirieslitt cnstants (e%).

In [1) It was shown that under the 'symmetric neighborhood" as-
Example 4.2 Let X - (1.2,3) and Vii = max(0,j - i). Let C13 sumption, cii > 0 if and only If cj, > 0, the orders of recurrence
c" a Icl a I-a and n ,when ea (0, 1.Set cij -0 or ll satisfy the fllowing detiledeorder blanc,
other Q~. Let the cooling schedule be c(t) a 1/8. Then the complete -pj freeyijEX
set of order Want*sqUatonas obtal by using all edge cuts is, =Oi frery06X

At e Vz AG e n M.It is easy to oft that the detailed order balance above is equivalent
03ev, AG V13. to the sumk of the order of recurrence of a state and its cost being

constanat on recurrently connected sets.
maA(A e V.A e V3) -max(hselVA e V), In this section e will show that this constancy property of the

with the maximum gie y sum of the reurrence order and cost on reciareritly connected sets
contius to hold under the much weaker assumption of "week re

MAR a vesabllty" introduced by Hajek in 12).

The sipem t Dfnition 5.1 A state s mid toe rechbe from state j i/there
isa seyuen"of stte j- in,it,..,- isuch tugt444646 > 0for

A 1 -i7, 03a -o0 0:5S p- 1.

satisfy the order balance equvations for every~ 7e (-oo) U 10, 1). Thu
ay vale of 0 <1I gives a adetmn of the order balance equations.

However, acalculato.whlch cnbebendsvlnIs71, shows that the Definition 5.2 A state iisvechbi atheight ffrnt j ifthem iuea
corrct order of recurrence *fstase2 is Path wmiit iain Dellltion 5.1 fr which il Nfer0!Sk : i.

Thu, the order of recurrnce and the rate of convergence of the Assumption 5.1 (Weak Reaversibility) Fer anmeti. number H
probability Pr(s(t) a 2) to 0, depend.s am the proportionality coe. and any Cam skits i and j, i is reachable at height Y frm j i/ and
slant C32 a a involved. * only ijj is reachable et heighst H from i.

Base on the above reult, we obtain the fooing property of In what follows e ame week revesIbility.
the orders of recereenseof the Nam In a reserenty connected mit.

Lemim 4.2 Ceossader.a gwweeb tsesetsed set A. Thene 5.1 (The Potential Theavem) Under
AssumptIon 5.1, for m ewrynrwilly connedtd sct A thce trias

1. #IAffremesA,tbewsj 421les'iJEA. a conatent (A) see faA + W- (A) for every GA.
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proofal SeaesiX prpilslt owr fatm-arigprmtr). Tbe re- Isou
Since Wi +A P. =(A) for all i A, where A is a recfvatly 6cCocuson

neted set, we obtain the foWowing necessary and sniciest condition Tie 100014 o order of rc.mace provides a novel approach for an.
fohr simalate anna~ling to hit a gkohuL mu with probability one alysiag the clas of Idnrkov chais whose transition probabilities are

LeMmgEd~~r all X) be the set ofgl&Wa cumtcders tisfy a tofbalance equatios,adthe aiov

minma. We now have the following definition due to 121. chain converges is a Ceuao sens to th, set of staes with the Largest
recurrence orders. We have given as algorithmx for gener ating a solo-I tlion to the order balance equatioes and have als provided a method

Degnitioa 5.3 Let hr he A smallest numier with As property that for characteriting all solutions to ths equatlons I& some uitua.
for M"r~ E X them exists 4 path ( a ,- e.. - i,) wia * > 0 tins where nona-unique solutions exist, the orders of recurrence can,
for 0!5k~g P &Wng in minimir ip 6M schhLW depend ca the proportionality constanus involvedlIsthe transition

probabilities, and not jut os thesir orders of magnitude. This prob-
Wi4- Wi :9dfr k -l,.p --- mel m aiasn open issM

The method of optinnuaioe by simulated analing falls within the
We shel calf d'he depth of tAs momiain problef. frameworkl of this class of hather chains. We have shows that it the

Msrhev process is wealhly reves il, then the sum of the recurrenc
order and the cost is a coasta"& on each Ut a( states connected

Theoem 5.2 Suppse &W week uuersihtit AO by recurrent arcs This alloes us to determine the necessary and
j. Uif t (t)* a +ca. them fisr every itOd cacdities x(0) G X. suficient oNN the cooln" rateJet thes optimization algorithm to hit a

global minimumn with probability aie (rm all italsae.

lim sp POW 6t) M) = 1, Reference.
III D. P. Coa.. and . L Komar, flalaa of recurence or,

e1ndg th ishet o iimu s W MA with M 'ld fiIt e. dar In Ums-inhomogsso Mfarbor chains with application to
simulated analin ProhshIt in the £ainervq and Infer.

R. if =' 4 c~d < +o, the there aist eM initial condition mees &ikos4 low toaper
z(O)f x W Okck 21 B. fnish, "Cooling scheduless far optimal analing," Mesh.-

Pr(z(t) F. Mgafr cat I 1)~ 0. L lcs ofOpirtidts 855553Wh, voL. 13, No. 2, pp. 311-329, Mlay
1N6.

[31 J. N. Tulteihls, 'Marhor chains with rare transitions and simu-
Prod The proof is the 555 an is Theorm (44) In III except that Waed anneeing, Preprit, Laboratory hor Inhxuaton and De.

if~ - n,..s~n jlsaatfra ito wih.4 ,,;Gad i6 claiuo& Systems, Massachustts institute of Technolog, August
W S7 fr I : k: thninstead * Wng the"n"ere Wkat(i 1985, rov. November ML

it - Qe gi)ves by the aesumption of sevtheln aeighborhoods,
a"e ses the Path U - 4.e,...l, - i0 with dfj" > 0 and W, -W4 S 141 S. Geoan and D. Geua, -SWtocaei rlaxation, Gibbs din-
I hor I S k S ,, guarateed by the weak reversibillty assumptiont N trihetloes, and the Bayesian retoration ot images,* IREE

2lunsectione en Patern Analpsis end Meckwn Iriteliipnce,
The same conditiont =g e(t)"' = a has beea earlier shown by voL PAU1-S. pp. M2-741. November 1064.

laish [21 to be necessary and suficlent hr Mi.. rz(t) 6 M) =
1,. fo r convergence in puwhsb0ity Thu while resl 1) above 3 D. Ultra, P. omeo, and A. Sanglovaaai-Vincsntell, -Con-
is weaker than his "anc it involves Caso as opposed to regular verge and fanite-tUme behavior of simulated asaaling.* Ad-
convergence, the reslt 2) Is a strongr sample path result maims in Applied PeabhsSdiy vol. 18, pp. 747-771, 1988L

It.i also worth ating that Ifo Aadditionally assus the property (4B.Gd,'otsaiayJrk cin ndove a f
of Amrtaric hhsuhoods, cj > 0 OW ci > 0, thee the detaile do B ase"M a-s% ~mlo tatistivchisad convrgenceo9,
bile.. resut of III Manow as a corollary of Thomo &I, as we ai the 7annea9ligaust,"oraLfStiscnPhicvl35
WON. p.7-3,18

[71 D. P. Conniors, Dielsoa of Recurroace Outer in Tome-
Corollary 5.1 (Detale Balance) Under the symmueiri neigh. Ihewcepsneou Meek.. Osein wit Appficet..n to Simuheld
INVAed -oetin Annedim. PhD thesis, University of Illinois, Urbana, Illinois,

196L
A, w o PervrQi1X.

Proot See [71 a
Nowe that by the above resuls, if the order of recurrenice of ewe

warw gate is a connected component is haow, then the orders of
oft offence far eli the stats belonging to the connectedl component
ewt aetermined. Howmme, as Example 4.2 shows, it is not always

p ebi t dtemie heordr f ecrrnc o eenone ste ina
.caectod component In that example, the connected components of

too uffset stat.ed he doen (1) and (2). We do not know the order
.4 Irecurrece d of time dune in the connected comsponen (2),
s,ihet lawin into accet tW proporlossally constant Involved

1 a h. tasstion Peebnbltn Thus, hr th" example the detile
16.lene. equatiON are 80 seffds hr detemining 0. However,
&.4, thtt the Pkws do satdey Corollary LL
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SIMULATED ANNEALING AND BALANCE OF RECURRENCE ORDERS

P. R. Kumar

University of Illinois
Coordinated Science Laboratory

1101 W. Springfield Avenue
Urbana, Illinois 61801IUSA

ABTR T

Several important problems in diverse application areas such as image restoration, code design, and VLSI design, contain at
their core an optimization problem whose solution crucially determines the performance of the resulting engineering system.
Standard descent algorithms for such optimization problems, however, typically get trapped in local minima, and fail to reach
solutions at or near the global minimum. Motivated by the problems of determining the global minima of optimization prob-
lems, the algorithm of simulated annealing for optimization has been proposed. Here we present recent results on the perfor-
mance of this algorithm in reaching the global minimum of combinatorial optimization problems.

1. INTRODUCTION

Several important application areas as diverse as image restoration,1 code design,2 and VLSI design,3 require at their core
the solution of an optimization problem, typically combinatorial optimization problems. It is for this reason that the subject
of combinatorial optimization has attracted much attention, e.g., in recent years.

However, such combinatorial optimization problems possess a large number of local minima, and standard descent schemes
for solving them typically get stuck insuch local minima, and fail to reach solutions at or near the global minimum. A good
illustration of this fact can be found in for the well-known traveling salesman problem, and this is one of the prime reasons
why such problems are intrinsically hard. Indeed for the traveling salesman problem, which is one of the most well known
examples of "intractable" problems, no non-trivial choice of neighborhood structure can eliminate the possibility of
existence of local minima.

M!gtivated by the critical need to solve such problems, the algorithm for optimization by simulated annealing was proposed
in . It is inspired by the problem of growing crystals in statistical mechanics, where "annealing" is the process by which a
solid is initially heated to a high temperature, and then cooled so slowly that it settles into a crystalline state corresponding to
a global minimum of the energy state. The cooling needs to be slow, since too rapid a cooling schedule traps the solid in
higher energy local minima which can correspond to defects in the crystalline structure.

By an analogy with the physical process of cooling which can attain states near the global minima, see also, the simulated
annealing procedure for optimization is a Monte-Carlo algorithm which is a slight, but important, modification of descent
algorithms. It occasionally, and randomly, accepts uphill moves, in addition to always accepting downhill moves. The
parameter governing the acceptance of uphill moves, is analogous to the "temperature" and it is gradually reduced to zero.
The object of such a scheme is that at high "temperature" the algorithm will escape local minima, and then slowly evolve
into a pure descent scheme which seeks out a global minimum.

Being inspired by statistical physics, motivated by the solution of engineering problems, and posing several mathematical
questions, this algorithm has atracted the attention of physicists, engineers and mathematicians alike.

In the rest of this paper we will present some key results that have been obtained on the performance of this algorithm, as
well as, an open issue on which more rsearch is needed.
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2. TME SIMULATED ANNEAL CAORTM

Let X be a flinit set, and let W: X-R be a given cst function on X. The goal is to minimize W(x) over x e X.

Coae.ondingl to each ste i e X, let Nj cX be a deleted neighborhood of X, with i 4 X. Let (qq: i e X, je Nil be such that
q and L- A qW= 1. Finally, let 0<e(t)<l be a cooling schedule with limn4. e(t)= 0. For simplicity, one may also
assume that (e (t)) is monotone decreasing.

Consider the Markov chain (x(t)) on X with transition probabilities defined by

py(t) = q . (t)wrw* for j e Ni

= I - l Pi(t) for j=i.

The simulated annealing procedure consists of moving through the state space X according to this Markov chain.

Essentially. the scheme consists of two steps at each iteration. Suppose that at an iteration t, x(t) = i. Then one chooses a
neighbor j randomly fom N according to the probabilities qa. If Wj W%, then j is accepted and x(t+l) is set to j. Thus
downhill moves are readily accepted. On the other hand. if Wj > Wi, then j is accepted with probability e (t) Ws and rejected
with probability l-e(t)wi-'. Ifj is accepted then x(t+l) is set toj; otherwise ifj is rejected then x(t+l) remains at i.

Thus the scheme is seen to be a simple modification of standard descent algorithms. The parameter e (t) is the analog of tem-
peratwe.
In an application such as the traveling salesman problem, X will denote the set of al: tours. A neighborhood structure can be
imposed by deleting two arcs in the tour and replacing them with two other arcs; see for examples.

3. SIM LATED ANNEALING TYPE MARKOV CHAINS

More generally, simulated annealing gives rise to a time inhomogeneous Markov chain over a finite state space X with transi-
tion probabilities given by:

pij(0=qE(t)V. ifj Ni

= l-k.Pik(t) Hi

where Vij 2 0. If ;(t) denotes the probability of occupying state i at time t. then the goal is to determine the asymptotic
behavior of (x(1)) as well as (x(t)).

4. RECURRENCE ORDERS AND BALANCE EOUATIONS

In8 we have shown that one may analyze the asymptotic behavior of such Markov chains by examining quantities which wc
call "recurrence orders" Let us define (A : ie X) by

Pi :0-0 if ;gi(t) < +0

•=sup(clc20and C(t)Ctj(t)'<4- otherwise.

If the supremum above is not attained, we will denote P by c- rather than c. L& us also define
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vm i- VU otherwise.

We shall call as the recurrence order of state i, and N.- as the recurrence order of the transition from i to j (see8 for more

precise details).

The following fundamental result was obtained in8 .

Theorem: Balance ofRecurrence Orders

For every A a X,

It is worth noting that this balance equation differs fundamentally from traditional balance equations which represent balance
of flow between two spatially separate sets in equilibrium. In contrast, our balance equation is for a process which is not in
equilibrium; moreover it is a balance in "time."

The advantage of this balance equation is that it converts the difficult analytical problem of determining the asymptotic

behavior of a time - inhomogeneous stochastic process into a purely algebraic problem of solving the balance equations.

In 9 we have obtained circulation based graph theoretic algorithms to solve these balance equations.

It has also4been shown that the Markov process converges in a Cesaro-sense to the set of states with the largest recurrence
orders; see . Thus, the solution of the algebraic problem gives the asymptotic behavior.

It should be noted that Tsitsiklis10 has also investigated such general Markov chains. His approach which essentially obtains
bounds on the state occupation probabilities for ime-invariant Markov chains, and then employs them for time-
inhomogeneous chains sampled over long time intervals, is quite different from ours.

5. APPLICATION TO SIMULATED ANNEALING

Simulated annealing corresponds to the special case where VU = [Wi-Wj +. For simplicity let us suppose that the neighbor-
hood structure is symmetric, i.e., ie Nj if and only if j e N.

Then we have obtained a considerably stronger statement of "detailed balance", see8 .

Theorem: Detailed Balance for Simulated Annealing

N-=Pj for all jj.

Using this result we have obtained in8 the necessary and sufficient condition on the cooling rate of (e(t)) for simulated
annealing to hit the global minimum with probability one starting from all states. It is necessary to introduce the notion of
"depth" of an optimization problem.

Definition: Depth ofana optimization problem

Let d be the smallest number such that forevery ie X, there exists a pathi=i.i... .i,,, with i,,) a global minimizer of W.
satisfying ik~l e Nk, for k - 0, 1, .... n0)-l, and such that W(ik)-W(i):< d for k =0,1...ni-.

Essentially, the depth measures die deepness of local minima.

In" we have proved the following Theorem.

o,
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Theorem:v Neces&ar aW So~Jcient Conditions toHit a Globa Minimum

P(x(t) hits a global minimum for some t 2! = 1

if and only if e4 (t) = -o.

Earlier., it has been shown in1I that a similar condition is necessary for the simulated annealing Markov chain to converge in
probability to the set of global minmizers. Our proof of necessity of this condition to guarantee ever hitting the global
minimum is a stronger sample path statement.
In9 we havase generalized this result to Markov chains which do not satisfy a symmetry condition, but satisfy instead what
is called in a "weak reversibility condition."

6. CONCLUDING REMARKS

At this stage we have a good understanding of the time vs. temperature asymptotics of simulated annealing. It is of consider-
able interest to study the asymptotic behavior of the simulated annealing algorithm as the size of problem instances grows,
much as in the theory of computational complexity. The results obtained can be used to measure the complexity of the algo-
rithm in probabilistic terms.
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1. INTRODUCTION

Let Q = (1,2,..... N) be a discrete state space, and consider a tine-homogeneous Markov chain

(X(k) ) on f0 with an NxN probability transition matrix P = [py] such that for any i, j f, and time

kW,

Pij = Prob ( X(k+1)=j I X(k=i ) (1.1)

Let v (k) = [vi (k)] be the I xN dis'ribution vector describing the chain 'at time k such that

v1(k) =P,-ob(X(k)=i); it follows that v(k+l) = v(k) P.

Suppose the Markov chain converges to an equilibrium distribution vector n, i.e.,

lim v(k) = x = z P. (1.2)

In this paper, we are primarily interested in the speed of convergence of v(k) to z. Let

1=.1 [z I> . . > [LN I denote the eigenvalues of P arranged in descending order of magnitude. It is

then well Inown [1] that the error at time k can be bounded by

IIv(k)-xII ! AN R21 (1.3)
where II is any lP norm and AN is a constant independent of time k. For our purposes it suffices

to consider only the II norm. One can rewrite (1.3) in the form I Iv(k) - x < AN e - l" where

= - (ogl 2) - ' (1.4)

is said to be the time constant of convergence of the Markov chain to its equilibrium distribution. It

follows that if IX2 1:1-1/q for some q1, then x5. Furthermore, given any 0<8<1 we will have

I Iv(k) - xli I 8 whenever k > [ log(AN) + log(1/8) ] T. Therefore, the rate at which the Markov

chain achieves equilibrium is determined by the time constant r and hence by the eigenvalue of second

largest magnitude X2.
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The main result of this paper is the derivation of an upper bound on the eigenvalue of second

largest magnitude of a reversible Markov chain. In his remarkable paper [3], Alon established the

relationship between the second smallest eigenvalue i2(Q) of the Laplacian matrix Q of a graph G,

and a certain epansion parameter c (G) of the graph. A direct application of his ideas to Markov

chains leads to a useful bound only for the case of symmetric Markov chains as shown in [2]. A sym-

metric Markov chain, however, can only have the uniform equilibrium distribution, namely, i=lI/N for

all i e fQ. In this paper we seek a useful bound for reversible Markov chains which, in general, could

have non-uniform equilibrium distributions.

The bound derived in this paper is of the form )21 :<l-l/q, where q is related to the minimum

non-zero off-diagonal entry in P, the skewness of its equilibrium distribution vector (a measure of the

non-uniformity of the distribution defined by (2.1) in Section 2), and 1g2(Q). Recently, Jerrum and

Sinclair [4J have derived an alternate bound of the form 0X2 1<1--2/2, where 0 is a certain conductance

parameter associated with the reversible Markov chain which is an extension of the expansion idea for

edge-weighted graphs. We compare the two bounds and exhibit a class of Markov chains for which

our bound, treated as a function of skewness alone, is asymptotically tighter than the Jerrum and Sin-

clair bound.

Reversible Markov chains are of interest because they can be used to model stochastic algorithms

for combinatorial optimization such as Simulated Annealing (SA) [6]. As an application of our results,

we will consider using SA at a fixed temperature to solve some specific combinatorial optimization

problems and derive bounds on the time constant of convergence of such chains.

The rest of this paper is organized as follows. In Section 2, we establish some notation and

definitions, and present some basic results from Linear Algebra and Non-negative matrices that are

required for the rest of the paper. A new upper bound for the second largest eigenvalue of a reversible
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transition matrix is presented in Section 3. The SA algorithm is briefly described in Section 4 fol-

lowed by a discussion of the temperature asymptotics of the corresponding reversible Markov chains.

A comparison between our new bound and that derived by Jerrum and Sinclair is also made along with

an analysis of the time constant of convergence of such chains. Finally, in Section 5, we summarize

our conclusions.

Ii



2. PRELIMINARIES AND DEFINITIONS

We study a time-homogeneous Markov chain (X(k) ) on a finite state space Q={l2. N)

with transition matrix P = [pij]. We begin by reviewing some basic material on nonnegative matrices

in general. In this paper we are using the standard graph-theoretic terminology from [5].

Definition 2.1 : The underlying directed graph of P is a directed graph Gd(V, Ed) with vertex set

V=--, and an arc (ij) directed from vertex i to vertex j if and only if p..*O. The matrix P is irredu-

cible if there exists a directed path from each vertex to every other vertex in its underlying directed

graph Gd. For an irreducible matrix, let r denote the greatest common divisor of the lengths of all the

directed cycles in its underlying directed graph. If r=1 the matrix is said to be primitive.

A primitive matrix P also has the property that there exists an integer m>O such that P m has all

strictly positive entries. The Markov chain itself is said to be irreducible (primitive) if its transition

matrix P is irreducible (primitive). Some authors refer to irreducible Markov chains as ergodic chains,

and to primitive chains as regular chains. We summarize some basic facts in the following theorem

from the Perron-Frobenius theory of nonnegative matrices.

Theorem 2.2 : [1] Consider an irreducible Markov chain with transition matrix P and distribution

vector v(k). Then

(1) X=l is the largest eigenvalue of P. Moreover, I is a simple eigenvalue.

(2) Let x be the left eigenvector corresponding to the eigenvalue I of P, i.e., X = 7EP, satisfying

N
;i=l. Then xi > 0 for all iQl. Furthermore, any right eigenvector x corresponding to any

i-,N

other eigenvalue X<W of P must be orthogonal to x, i.e., nixi = 0.
i-i

ii
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(3) Let y be the right eigenvector corresponding to the eigenvalue I of P, i.e., y = P'y, satisfying

N
'y¥i=l. Then y¥ = IIN for all i e0. Furthndiore, a left eigenvector corresponding to any other

i-I

eigenvalue of P must be orthogonal to y.

(4) Given any starting distribution vector v (0), the distribution vector v (k) at time k converges in

1 k-1
Cesaro sense to z defined in (2) as k -+-, i.e., limT-, v(1) = z. If, however, the Markov

k-- k i-0

chain is primitive, then v(k) actually converges to x in the regular sense, i.e., limv(k) = x.
k-.+-

The left eigenvector x defined in (2) above is called the equilibrium distribution vector of the

irreducible Markov chain. It must be noted that from (4) above convergence to the equilibrium vector

is guaranteed only for primitive chains. For general irreducible chains, convergence occurs only in a

weak Cesaro sense.

Definition 2.3 : Consider a Markov chain with a structurally-symmetric transition matrix P, i.e., pij>0

if and only if pji>0. Its underlying undirected graph is a simple undirected graph G (V, E) obtained

from the underlying directed graph Gd (V, Ed) by deleting all self-loops and replacing directed 2-cycles

by simple edges. Thus, arcs (ij) and (j,i) in Gd are replaced by a single edge {i,j in G.

Definition 2.4 : For an irreducible Markov chain with equilibrium distribution xt, we define the skew-

ness s, of the chain to be

Xi
sx = max - (2.1)

ijeQ zi

Clearly, s for an irreducible Markov chain is well defined since such a chain has x, >0 for each i e Q

from part (2) of Theorem 2.2. The main result of this paper deals with reversible Mar.ov chains,
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which we now define as follows.

Definition 2.S : An irreducible Markov chain with transition matrix P and equilibrium distribution

vector z is said to be reversible if, for all ij fLI, we have

P, 'i = Pji Xj (2.2)

A reversible Markov chain has the following interesting property. The proof is an easy conse-

quence of the discussion above, and is therefore omitted.

Proposition 2.6 : Consider a reversible Markov chain with transition matrix P and equilibrium distri-

bution vector ic. Define di = N for each i£ E, and the diagonal matrix D = diag[ d1 ,d 2, dN

Then,

(i) D2 P is a symmetric matrix.

(ii) D P-D -' is a symmetric matrix.

(iii) Consequently, P is diagonalizable and has real eigenvalues.

In general, for any KxK matrix M with real eigenvalues, let XI(M) X2(M )> • X • (M) denote the

eigenvalues of M arranged in descending order. Thus, X1 (M) denotes the largest eigenvalue, %2(M)

denotes the second largest eigenvalue etc. Using this notation, Theorem 2.2, and the above proposi-

tion, it is clear Oit for a transition matrix P of a reversible Markov chain we have

lI-I(e) > .,2(P) ! X(P) 2t ... 2! • )N(P). •(2.3)

There are several symmetric matrices associated with undirected graphs. For this paper it suffices to

consider only one of them.

Definition 2.7 : Given a simple undirected graph G(VE) on N vertices (i.e., no self loops and no
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multiple edges). Let deg (i) denote the degree of vertex i e V which is the total number of edges in E

incident on the vertex i. Then the Laplacian matrix Q (G) is an NxN matrix with entries defined as

F deg(i) if j=i
qaj = -1 if ij}EE. (2.4)

0 otherwise

Clearly, the Laplacian matrix Q (G) is a symmetric matrix. The following theorem (stated without

proof) provides some more information about Q (G).

Theorem 2.8 : If G (VE) is a connected simple graph with a Laplacian matrix Q, then

(1) Q1 = Q, where I is a vector with each entry = 1. Hence, Q has an eigenvalue 0 with eigenvec-

tor.. Moreover, 0 is a simple eigenvalue of Q, i.e., rank(Q) = N-1.

(2) The quadratic form xQ 2x

(ij)eE

(3) There exists a N-lxN matrix B of full rank such that Q - BTB.

In general, for any KxK matrix M with real eigenvalues let gj(M)<5g 2(M)<5 .• • <LK(M) denote

the eigenvalues of M arranged in ascending order. Thus, g.(M) denotes the smallest eigenvalue,

92(M) denotes the second smallest eigenvalue etc. From Theorem 2.8, we have Q is positive semi-

definite, and has eigenvalues

0=41(Q )< 2(Q)<"... jN (Q)- (2.5)

The following results will prove useful in deriving our eigenvalue bound in the next section.

Lemma 2.9 (Min-max principle [13]) : If A and B are any two symmetric KxK matrices such that

A-B is positive semi-definite, then for each i = 1,2, .. K, we have gi (B)<i A(,).

_I
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Lemma 2.10: Let B be any N-lxN matrix of full rank. Then, for each i = 1,2. N-1, we have

L, (BBT) = tI(BrB).

Consequently, the smallest eigenvalue of BBT is the second smallest eigenvalue of B TB, the second

smallest eigenvalue of BBT is the third smallest eigenvalue of B TB, and so on. We use these to prove

the next result.

Theorem 2.11 : Let Q be any NxN symmetric and positive semi-definite matrix with

rank(Q) = N-1, Z be a NxN diagonal matrix with strictly positive diagonal entries, and Gmit>0

denote the smallest diagonal entry in 1. Then,

(1) The NxN matrix IQZ is symmetric and positive semi-definite.

(2) Also, I 2(-T ) > .Lj.g2(Q).

Proof : The proof of (1) is obvious. To prove (2), use Equation (2.4) to write Q = BTB, where

B is an N-lxN matrix of full rank. Define C = BE. Clearly C is also of full rank since E is a

diagonal matrix with strictly positive diagonal entries. Also, IQI = EBTBE = CTC. Therefore,

by Lemma 2.10,

t2(yQ y) = I 2(CT C) = pIx(CCT) (2.6)

But CCT = BE 2BT. Also, for any vector x eRN- , the quadratic form

N-I
xT(CCT T)x (o-,)Ya > 0. (2.7)

i-l

where we have defined y = Brx. Therefore the matrix CC - .B is positive semi-definite

by definition; hence, by Lemma 2.9, we conclude that

I(CCT)2Z!,jLI(BBT) (2.8)

Applying Lemma 2.10 once again, we get

Il
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,±i(BBT) = g 2(B TB) - 2±(Q) (.
Combining (2.6), (2.8), and (2.9) proves this theorem.
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3. A NEW EIGENVALUE BOUND FOR REVERSIBLE MARKOV CHAINS

A reversible Markov chain has a structurally-symmetric transition matrix P, and hence has an

underlying undirected graph G which is both connected and simple. Furthermore, Proposition 2.6 says

that P has the second largest eigenvalue X2<1. The main result of this paper is to obtain a tighter

upper bound for X of P. This bound will be expressed in terms of the following quantities:

(1) a = min{ pij : i~j , pij>O ), the smallest non-zero off-diagonal entry in P,

(2) s = the skewness of the equilibrium distribution it of P, and

(3) 9±2(Q) = the second smallest eigenvalue of the Laplacian matrix Q of the underlying undirected

graph G (VE) of P.

Theorem 3.1 Let Q = (l,2, ,NJ, and consider a reversible Markov chain on the state space Q

with transition matrix P, and equilibrium distribution it. Also, let a, sr, and g.2(Q) be as defined

above. If X < 1 is any eigenvalue of P, then

I a .2(Q)X,< 1- (3.1)
St

Proof : Let di = -/-7 for each ie fl, and define the NxN diagonal matrix

D = diag [ d 1, d2, , dN ]. Since P is irreducible, ;i > 0 for each iEQ from part (2) of Theorem

2.2. Therefore di>O, D is invertible, and D -1 = diag [ di 1 , • , d p'1.

Let X < 1 be any eigenvalue of P and let x c RN be the corresponding right eigenvector, i.e.,

Px = Xx. Therefore, xTD 2(I-P)x = (1-.)xTD 2x, which can be written as

1-X = xT(D 2 - w)X (3.2)

xT 2x

where we have defined the matrix W = D2P, i.e.,
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wij = di2 pij = x pij (3.3)

The reversibility condition of (2.2) implies that W is symmetric. Also, the irreducibility of P implies

that W1 = D2P1 = D21, by Theorem 2.2 part (1). Therefore, for each i = 1,2 ..... N we have

N
i = w, (3.4)

j-1

Now, consider the quadratic form in the numerator of (3.2) which can be written as

N N N

XT(O 2 - W)x = r (i-wii)xi 2 - Wi X i X, (3.5)
illi=I j.1

j*.

Using (3.4) we get

N N
XT(DZ - W)x = w5j (x,2 

- xixj) (3.6)
s-I jrl

jiJ

Now consider G(V, E) the underlying undirected graph of P. This is also the underlying graph of W,

since for j i, we have pij*O if and only if wij*O. Also, wj = wji since W is symmetric. Hence,

(3.6) can be written as

XT(D 2  W)x = Z Wj (x -xj)2 - 1 Z (Xi-Xj) 2. (3.7)
Vij)eE (ij)}E

where

3=min I we,: Ii,j)E . (3.8)
denotes the smallest non-zero off-diagonal entry in W. Define rm&x = max ;i , rnu = min 7ti, and

a = rain ( pij: [{i~j})eE ). (3.9)

as the smallest non-zero off-diagonal entry in P. Since, by definition, wij = ;pij, we immediately get

13 > a X (3.10)

Applying Theorem 2.8 part (2) to the right hand side of (3.7) and using (3.10) we get

xT(D 2 - W)x>a~~xTQx (3.11)

where Q is the Laplacian matrix associated with the underlying graph G. Combining (3.2) and (3.11) I
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results in

XTD2x 
(3.12)

It must be noted that x is a ight eigenvector of P with eigenvalue ),<1, while -9 = lTD 2 is a left

eigenvector of P with eigenvalue 1. Theorem 2.2 part (2) immediately shows that x and x must be

orthogonal, i.e., f D 2x = 0. So consider the following constrained optimization problem:

Minimize z TQz over all zrRN

such that IT D 2z = 0 and Z TD 2z = 1.

Setting y = Dz or z = D-1 y, the problem becomes equivalent to

Minimize yTD-IQD-ly over all yeR"

such that .TDy = 0 and y Ty = 1.

Recall from Section 2, that Q is a symmetric positive semi-definite matrix with eigenvalues

o=g1 (Q)<g 2(Q •:r. ••gN (Q). Also, 1 is an eigenvector of Q for eigenvalue gl.(Q) = 0. Theorem

2.11 part (1) shows that D-'QD -1 is also a symmetric positive semi-definite matrix, by treating

E = D -1 Moreover, D-QD- ' D_ = Q, i.e., Dl is an eigenvector of D-'QD -' with eigenvalue 0.

Therefore, the above optimization problem is to minimize the quadratic form yTD-IQD-ly over all

normalized vectors ye RN that are orthogonal to D1, the eigenvector corresponding to the smallest

eigenvalue 0 of the matrix D"'QD-1. From quadratic programming theory [14], the minimum value of

the quadratic form is clearly g2(D-'QD-'), the second smallest eigenvalue of D-'QD-1. Therefore,

XTQx > l2(D-'QD-1). (3.13)
X TD 2 x

Applying Theorem 2.11 part (2) to the right hand side of (3.13), with : = D - ', gives

-- d.._I



13

-2(D- 1QD - ') 1 2() (3.14)

So finally, combining (3.12), (3.13), and (3.14), we get

a >o n _c(Q Xg 2(Q) (3.32)

thus proving the theorem. 0

For some graphs G, the second smallest eigenvalue g2(Q (G)) is easy to compute analytically.

Two examples are given below.

Cycle graphs: If G is a simple-cycle on N vertices, then the eigenvalues of its Laplacian matrix Q

can be shown to be [10]

ti (Q) = 2(1 - cos(2ir(i-l)IN)) (3.15)

for each i = 1,2, • •N. Consequently, 92(Q) = 2(1 - cos(21rN)) which approaches 0 as N -*.

Hypercube graphs: If G is an n-dimensional hypercube having N = 2' vertices, then its Laplacian

matrix Q has n-+ distinct eigenvalues [11] given by

k. =2m ;m =0,1,2 .. n (3.16)

with eigenvalue 2m having an algebraic multiplicity 1" Consequently, the second smallest eigen-

value g2(Q) = 2 which is independent of N, the size of the matrix.

For graphs G in which g 2(Q (G)) is not easy to compute, one can ue a lower bound derived by

Alon [3] given below. This bound requires a certain expansion parameter of the undirected graph G

which we now define as follows.

Definition 3.2 Let G(V, E) be an undirected graph. If ScV is any subset of vertices in G, we

i | II'
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define the deleted neighborhood Nbd(S) to be the set of vertices in V-S which are joined to some

vertex in S by an edge in E.

Definition 3.3 : The expansion parameter c (G) of an undirected graph G (V, E) is defined as

c(G) = min INbd(S)I (3.17)
Is.

where the minimization is performed over all subsets S QV such that O< IS I<I1V 1.

Theorem 3.2 : [31 Let G (V, E) be graph with Laplacian matrix Q and expansion parameter c. If

g > 0 is any eigenvalue of Q, then

c2

g 4+ (3.18)4 +2c 2

-~
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4. APPLICATIONS OF THE EIGENVALUE BOUND

As an application of the results of Section 3, we consider the Simulated Annealing (SA) algo-

rithm. This algorithm was first proposed as a probabilistic algorithm for solving difficult combina-

torial optimization problems [6]. It has been used with some success in problems such as VLSI lay-

out optimization, the design of FIR filters with finite precision, and image restoration.

We describe the SA algorithm briefly. Let Q = [1, • N ) be a set of states with a cost func-

tion C: Q -- R. The SA algorithm attempts to find a state with globally minimum cost. Let x(k)

denote the state of the algorithm at time k. With each state ie fl, we associate a set of neighboring

states NcD, which satisfy the following assumptions:

(4.1) The neighboring sets are symmetric; that is, jrN i if and only if i Nj.

(4.2) Given any two states i and j in Q, there exists a finite sequence of states i0,i1 , • • ,ij such

that io=i, i,=j, and i+ieNj,, for each l=0,1, • - • M-1. This condition is often referred to as

the reachability requirement.

To simply matters we make an additional assumptions which is satisfied in most applications.

(4.3) JN I = p for each i E Q, i.e., all neighbor sets are of the same size.

Suppose that the present state is x(k)=i. The algorithm then randomly picks a state jn Ni with

probability 1/IN i . If C(j) < C(i), it sets the next state to be x(k+1) =j. However, if C(j) > C(i),

it sets the next state to be x(k+l) = j with probability p = e(C(i)- c()f, and x(k+l) = i with proba-

bility I-p. In other words, if C(j) > C(i), then the algorithm accepts j as the next state with proba-

bility p or remains in the present state i with probability 1-p. The parameter T>O plays the analo-

gous role of temperature in the physical annnealing process. We define

- _ ... 'I
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e (4.4)

to simplify notation. Note that T = (1ogCy)- '. So, if 0<T<+ , then 0<<1. Also, as T-+0 we have

E-40.

The SA algorithm thus simulates a time-homogeneous Markov chain on state space C1 with transition

matrix P = I with off-diagonal entries (i *j ) given by

E (jC(i)14 if jeNi
= p i (4.5)Pij =  0 if j r l-N i

(4)

where [z I denotes the positive part of a real number z, i.e., [z ] =z if z >0, and (z ])=O if z <0. The

diagonal entries of P are given by

P = pq (4.6)
jW~

It must be emphasized that we have assumed a fixed temperature T>0 for all time k of the SA

algorithm. This is often referred to as Fixed-Temperature-Simulated-Annealing (FTSA) as opposed to

a situation wherein the temperature is allowed to vary with time k according to a prespecified cooling

schedule (see 17,8,93 for details) which results in a time-inhomogeneous Markov chain. In this paper,

however we focus only on the FTSA algorithm.

It is easy to check that that the assumptions (4.1) and (4.2) on the neighboring sets result in P

being primitive and structurally symmetric for any (<e<l. Furthermore, with assumption (4.3), the

equilibrium distribution vector x(e) can be shown (see [91) to have entries

(e) c(i)
(4.7)

I,,'

which is often called the Boltzmann distribution at temperature T = ogE-') - l. Using (4.5), and (4.7),

one can easily verify that the FTSA Markov chain is reversible.

dN
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Let S*cQ denote the set of all global minima. The optimal distribution vector %" is a vector

with entries defined as it! = 0 if i is not a global minimum, and Xi = I if i is a global minimum.
Is'

Temperature Asymptotics : For the FTSA chain, it is clear from (4.7) that

limIX(e)-XII = 0 (4.8)

i.e., the equilibrium distribution ix(e) approaches the optimal distribution as e--40. For a chosen 0<<l,

let v,(k) denote the distribution vector of the FTSA chain at time k 0 as defined in Section 1. From

Theorem 2.2 part (4) we have

lim I Iv,(k)- i(e)II 0 (4.9)

Hence, given any arbitrary real 8>0, from (4.8) and (4.9) there is an .>O and a time k0 , such that the

distribution vector of FTSA (at the chosen e) satisfies

IIv (k)- I I < 5 (4.10)
for all time kk 0 .

In this section we are primarily interested in the rate of convergence of (4.9) as a function of

E--0. We refer to this as the temperature asymptotics of FISA. From the discussion in Section 1,

it is clear that for a particular e,0, the rate of convergence of (4.9) is governed by the time-constant of

convergence r, defined by (1.4), of the FTSA Markov chain with transition matrix P. Using (1.4) and

(3. 1) we now derive a bound for T and study the behavior of this bound a5 e-->.

From Theorem 3.1 we can obtain an upper bound on the eigenvalue of the transition P with

second largest algebraic value. However, to obtain a meaningful bound on c, the time-constani of

convergence, we need an upper bound on the eigenvalue of P of second largest magnitude. To this

end, we consider a new Markov chain corresponding to the matrix

I.
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= th(I+P). (4.11)

Clearly, 5 has non-negative eigenvalues; thus, the algebraic value and the magnitude of an eigenvalue

of P are the same. Also, 5 has the same equilibrium distribution as P. Furthermore, the off-diagonal

entries of 5 are half the corresponding entries of P; hence, P is also reversible by (2.2) and has the

same underlying undirected graph as P. We will therefore work with the new P instead of P.

Let us now relate the parameters used in the bound of Theorem 3.1 to the parameters of the

optimization problem being solved by an FTSA Markov chain. Define

A= max I C(i)-C(j) I (4.12)ijen

as the maximum cost difference between any two states. Let G(VE) be the underlying undirected

graph of A (or P) with Laplacian matrix Q and define

8= max I C(i)-COj) I (4.13)
(ij)eE

as the maximum difference in costs between any two neighboring states in the Markov chain. Then,

from (4.7) it follows that the skewness of the chain is given by

S= (4.14)

The smallest non-zero off-diagonal entry of A can be computed from (4.5), (4.11). and (4.13) to be

a =(4.15)2 p

where p is the number of neighboring states for each state as given by Assumption (4.3). Using (3.1),

(4.14), and (4.15) we get

0 X() < 1 - 2(Q) (4.16)2p
from which one can bound the time-constant for convergence for sufficiently small e using (1.4)

(p) (4.17) I
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as a function of e or using (4.14)

2p (4.18)

92(Q)
as a function of the skewness s. In case p2(Q) is not easily computable, one could use Alon's result

of (3.42) to get

T < 4(1+2c- 2)p sx(1 , A) (4.19)
where c is the expansion parameter of the graph G. Since 8:5A by definition, one can get a less

stringent bound as

t < 4 (1+2c -2) p si 2  (4.20)

For a fixed optimization problem (i.e., fixed N, p, c, etc.), (4.20) suggests that the time-constant

for convergence of the FTSA Markov chain to its equilibrium distribution with skewness s,, is

' = 0(s, 2). In practice, usually 5-r-A which yields c = O(s ). Furthermore, the bound in (3.1) may

not be tight suggesting an even slower growth of r as a function of the skewness s,

We now provide an example of a cost distribution on a state space for which the eigenvalue

bound of (3.1) for the FTSA transition matrix is the best possible bound when treated as a function of

skewness alone. We will also compare our bound with that of Jerrum and Sinclair [4] for this exam-

ple. To this end we need the following definitions.

Definition 4.1 : [4] Given a reversible Markov chain on state space l with transition matrix P and

equilibrium distribution ic. The conductance parameter is defined as

*(P) = miniESjEV-s (4.21)

where the above minimization is performed over all subsets S of states with 0< ILi:5l/ 2 .
its

A
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Theorem 4.2: [4] For a reversible transition matrix P satisfying p# 2 1/2 for all i e Q, we have

1 - 20P) 5 X(P) _5 1 - tP (4.22)
2

Example 4.3: Consider a simple cycle on N=4n vertices as the underlying graph of a FTSA Markov

chain with a cost function defined as follows:

i if l Si~n

2n+,-i if n+l i:<2n
C(i) = i-2n if 2n+l:SiS3n (4.23)

4n+l-i if 3n+l< _i4n

Using these costs, p = 2, and some ez.O, define the transition matrix P using (4.5) and (4.6) and set

P = (I+P). For transition matrix 1 it can be shown that

A=n-1 , 5=1 (4.24)

= , , skewness s = (4.25)
4

9,2(Q) = 2(1 - cos(- n-)) (4.26)2n
p3-I - I!^

= -I- (4.27)
4(1 - en )

Thus, our bound from (3.1) gives

I - 2(a) Z' (1 - cos(- )) (4.28)

while the Jerrum and Sinclair bound from (4.22) gives

1 -X2() > - (4.29)16

for sufficiently small e and large n.

fo

I
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For a fixed n >2 (i.e., a fixed problem), it is clear that our bound in (4.28) is superior to the Jerrum and

Sinclair bound in (4.29) for

0 < e < {8(l - cos(,ic2n))1(n - 2)

and the bound in (4.28) gets even better as e--0. Using the lower bound in (4.22) and our bound in

(4.28) and we get bounds for the time-constant for convergence to equilibrium as a function of skew-

ness s rather than e as

2 s < r 5 2 sO+/(nO) (4.30)
1 - cos(x/2n)

For example, if we consider n =1 1, (4.30) reduces to

2s 5 c < 196.5s 1  (4.31)

indicating that our upper bound for the time-constant 't is a fairly tight bound for large skewness s (or

small e).

The purpose of Example 4.3 was merely to illustrate an example of a reversible Markov chain for

which the eigenvalue bound (hence, a bound on the rate of convergence) is fairly tight. The

corresponding optimization problem, however, is very easy, since, by construction, the states 1, 2n,

2n+l, and 4n have the globally minimum cost of 1. The following example illustrates a difficult and

more realistic optimization problem for which one can still use our eigenvalue bound of (3.1) to obtain

a meaningful bound the time-constant of convergence of the corresponding FTSA Markov chain.

Estimating the conductance parameter for this chain, however, is not straight forward; hence, the Jer-

rum and Sinclair eigenvalue bound of (4.22) is not directly useful in obtaining a meaningful bound for

the time-constant in this case. However, with considerable ingenuity, Jerrum and Sinclair have been

successful in obtaining good lower bounds for the conductance of certain classes of reversible chains

(4]. Indeed, for these chains, the conductance is much larger than 0 (s,-1); hence, our upper-bound by

Al
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(3. 1) is not tight in this case. Our bound, on the other hand is very simple to compute in general, as

the following example will demonstrate, and is also tight on certain chains (as considered in Example

4.3).

Example 4.4 :Let (a -<a2:5... :5a.I be a set of given positive integers n ascending order and define

K =a+ 2+ +at(4.32)
2

Let Q2 denote the state space of all binary vectors of length n and consider a state u =(U 1,U 2 ,.,)

where uir= (0,1). Define the cost of the state as

11!

C(u) = IK - Jai u i (4.33)

Define the neighbors of a state u as all states differing from u in exactly one bit. Consider an FTSA

algorithm to find the state of minimum cost. This is the optimization version of the SETPARTITION

problem tfiat is known to be NP-Complete [12]. Clearly, N = 2~, p = n, 8 = a,,, A~ = K, skewness

s = e, and the underlying graph is the n -dimensional hypercube. Therefore, sr 2(Q) = 2. Using

(4.16) we immediately get

. (4.34)
n

and from (4.18) we have a bound for the time-constant in terms of the skewness s as

S (4.35)

For example, if the given integers are (3,5,6.11,15), we have n = 5, a. = 15, and K = 20. From

(4.35), the time-constant for an FTSA algorithm to solve the given instance to reach an equilibrium

distribution of skewness s 104 is bounded above by Tas 5x107 iterations.

ill
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5. CONCLUSIONS

In this paper we have derived a new upper bound on the second largest eigenvalue of a reversible

Markov chain. The bound is a simple function of the skewness of the equilibrium distribution of the

chain and we give examples of reversible chains where the upper bound is fairly tight. The upper

bound on the eigenvalue enables us to study the time constant of convergence of the Markov chain to

its equilibrium distribution. In particular, we can bound the time constant of convergence of a fixed

temperature simulated annealing (FTSA) algorithm solving a particular instance of an optimization

problem. Moreover, we can study the growth of this bound as the temperature approaches zero or

skewness becomes arbitrarily large.

_ _ __. ....
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